
UMO 2024 Questions

Q1. (20 points) What is the last non-zero digit of 15!?
(source: Enda 5)

Solution: We can compute the last non-zero digit of 15! by writing out 15!, cancelling every
possible factor of 10 and then computing the last digit by doing multiplication modulo 10.

15! = 1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 · 9 · 10 · 11 · 12 · 13 · 14 · 3 · 5
= 103 · 3 · 4 · 6 · 7 · 8 · 9 · 11 · 12 · 13 · 7 · 3
= 103 · (10n+ 8)

for some nonnegative integer n, by computing the product of the terms not divisible by 10
on the second line modulo 10.

Q2. (20 points) Dissect a square into three triangles. What’s the smallest possible difference
between the areas of the largest and smallest triangles?
(Give your answer in the form a

b , where a, b, c, d are positive integers such that gcd(a, b) =
1.)

(source: Chris 5)
Solution: Intuitively, the dissection must be of the form {4ABX,4XCD,4AXD} where
X is a point on side BC of square ABCD. (See below for a proper explanation of why
this is true). Then 4AXD has area 1

2 and the other two triangles have an average area of
1
4 , meaning that the smaller one has area difference with 4AXD of at least 1

4 .

Proper explanation: the dissection gives us a planar graph with F = 4, so E−V = 2. E is
the number of edges of the triangles, not double counting shared edges; the triangulation
is necessarily connected and so at least 3 − 1 = 2 edges are shared. Thus E ≤ 7 and so
V ≤ 5, but V = 4 clearly doesn’t work and so V = 5. The fifth vertex cannot be in the
interior of the square or else a triangulation is clearly not possible. Therefore it lies on a
side; without loss of generality it lies on BC.



Q3. (20 points) Let X be a random variable with SX ⊆ [−1, 1]. If ν is the largest possible
value of Var(X), submit 720ν.

(source: Blaise 9)

Solution: From the definition of variance

Var(X) = E(X2)− E(X)2

Since −1 ≤ X ≤ 1 then 0 ≤ X2 ≤ 1 so = E(X2) ≤ 1. As squares are non-negative

E(X)2 ≥ 0. Hence Var(X) ≤ 1. But obviously if X has pmf pX(x) =

{
1
2 x ∈ {−1, 1}
0 otherwise

then Var(X) = 1 and so ν = 1. Hence 720ν = 720.

Remark. it is also well known (e.g. this is a continuous variant of the lemma in post #2
on the AoPS thread for USAMO 2020/6) that the range of a random variable is at least
twice its standard deviation.

Q4. (20 points) Suppose the following system of equations holds:

����+��� =����

����+���� =����������

���+���� =��

����+�� =����

��+���� =����

����+���� =���

What is the sum of all possible values of ����+����������+��?
(source: Jamie 4)

Solution: This solution assumes that the fruits may be taken as variables representing real
numbers, and that the addition operation is commutative.

Equations 1 and 6 imply that ��� = ���� := x and ���� = 0. Equation 5 then indicates that
�� = x; equation 4 indicates that���� = −x and equation 3 indicates that 2x = x =⇒ x = 0.
Then equation 2 implies that ���������� = 0 as well, so all six variables equal zero. Hence the
answer is 0.

Q5. (25 points) We can evaluate 52 by moving the 2 in front of the 5. Suppose this also

works for the matrix
[
i l
t g

]
. Find the sum of all possible values of i+ g.



(source: Blaise 3)

Solution: We have that [
2i 2l
2t 2g

]
=

[
i l
t g

]2
=

[
i2 + lt il + lg
it+ tg lt+ g2

]
.

The equations 2l = l(i+ g), 2t = t(i+ g) indicate that either l = t = 0 or i+ g = 2. It is
possible for i+ g = 2, such as if i = 2, l = t = g = 0. If l = t = 0, we have 2i = i2, 2g = g2.
Thus we can choose i, g ∈ {0, 2} as we please (and it is easy to check these work as well),
so we get i+ g ∈ {0, 2, 4}. Thus the answer is 0 + 2 + 4 = 6.

Q6. (25 points) Alfred Young has some used linear algebra tutorial sheets to throw away.
The paper bin is only wide enough to fit two tutorial sheets side by side, but sheets can be
stacked on top of each other in two piles.
Alfred assigns the number 3 to the bottom page in the taller pile, the one above it a 4 and
so on. He then does the same with the smaller pile starting from 2.
Alfred then changes each page’s value by dividing it by n, where n is the number of pages
at or above its level in its own pile, incremented by one if and only if the page is in the
larger pile and there is a page at its level in the smaller pile.
What is the product of all the page values if Alfred made two piles of 20, and then added
24 more pages to one of the piles (before doing any labelling or computation)?

(source: Jamie 1)

Solution: The initial labels give a product of 1
246! · 21!. The division part then gives

us a quotient of 20! · 24! · 26 · 27 · · · · · 45 = 20! · 45!
25 . Thus the answer ends up being

1
221 · 25 · 46 = 12075.

Q7. (25 points) When given a polygon, Tammy tries to paint its edges without painting
the same vertex twice. However, Tammy is blind and she may accidently paint an edge
adjacent to the one she intends to paint without realizing.
Given a 5D hypercube, how many edges can Tammy paint while guaranteeing that she
doesn’t paint the same edge twice?

(source: Jamie 5)
Solution: If Tammy selects an edge for painting, there are 8 other edges she could acciden-
tally paint, blocking out 9 edges in total. As there are 80 edges on a 5D hypercube [see
Question 8 for how to compute this], at most 8 edges can be selected safely. However, if
you imagine painting the edges (a, b, c, d, 0) ∼ (a, b, c, d, 1) for the 8 tuples (a, b, c, d) with
sum either 1 or 3, then the distances between the vertices of two distinct edges is at least
2, so no two selected edges are adjacent to a common edge. Thus the answer is 8.



Q8. (25 points) How many edges does a 7D hypercube have?
(source: Chris 11)

Solution: An n dimensional hypercube has 2n vertices. n edges emanate from each vertex;
each edge is counted exactly twice by this process. Thus an n dimensional hypercube has
n2n−1 edges, which is 448 for n = 7.

Q9. (30 points) Compute∫ π

0
cos(t) sin(cos(t))− (sin(t) + sin2(t)) cos(cos(t)) dt.

Give your answer in the form a sin b, where a, b are integers with b nonnegative.
(source: Chris 3)

Solution: By recognition,∫
cos(t) sin(cos(t))− (sin(t) + sin2(t)) cos(cos(t)) dt = (1 + sin(t)) sin(cos(t)) + C, C ∈ R

and so the answer is (1 + sinπ) sin(cosπ) − (1 + sin 0) sin(cos 0) = sin(−1) − sin(1) =
−2 sin(1).

Q10. (30 points) Find an integer 0 ≤ d ≤ 36 such that 228 − d is divisible by 37.
(source: Enda 3)

Solution: We can write it out: 2, 4, 8, 16, 32 ≡ −5,−10,−20,−40 ≡ −3,−6,−12,−24,−48 ≡
−11,−22,−44 ≡ −7,−14,−28,−56 ≡ −19,−38 ≡ −1 tells us that 218 ≡ −1 (mod 37) and
so 228 ≡ −210 ≡ 12 (mod 37) so that d = 12 works.

Remark. One can more easily obtain that 218 ≡ −1 (mod 37) by noting that 2 is a
quadratic residue for primes that are ±1 (mod 8), which 37 is not.

Q11. (30 points) A cyclone is a sequence of subsets of a finite set, where each is a proper
subset of the one after it. A complete cyclone is one where the ith subset has exactly i
elements, for each subset in the cyclone. Suppose you have a complete cyclone for a set S
of size 24,

{s1}, {s1, s2}, . . . , {s1, . . . , s23}, S.

You can change any one set in the cyclone at a time, while maintaining the property that
it is a cyclone. Submit the minimum number of changes to reverse the cyclone into

{s24}, {s24, s23}, . . . , {s24, . . . , s2}, S.



(source: Blaise 6)
Solution: Observe that introducing extra elements does not help, because we can simply
delete annything involving these during the operations and this does not increase the
number of total changes. Because we are using (sub)sets which involve distinct elements,
the final element is always S, and one element is removed in each step backwards; represent
a cyclone by this sequence instead. It’s clear that if the subsets are T1, . . . , T24 := S then
the only valid operation to Ti is to remove the element of it not in Ti−1, and add the
element of Ti+1 which was not previously in it. This corresponds to swapping two elements
in the sequence representation. The original cyclone and the final cyclone are

(
24
2

)
= 276

inversions apart, so this is the answer. Q12. (30 points) Find the sum of all integers

n ≥ 4 with the following property:

There exist n− 1 integers which can be written in a circle, such that the set of
products of adjacent numbers is an n− 1 element subset of {1, 2, . . . , n}.

(source: David 1)
Solution: By strong Bertrand, there are two primes between n and 36

25n for n ≥ 25, meaning
that for n ≥ 36 there are at least two primes between n

2 and n. We can also manually
check this holds for all n ≥ 4, except for n = 4, 6, 10. Note that our subset of products
cannot contain a prime p > n

2 , since p can only be represented as 1 · p, and then the other
neighbour of p in the circle cannot produce p again (since the n − 1 element subset has
all distinct elements) but all other multiples of p exceed n. Thus if there are two such
primes, it must be impossible. Thus it is not possible unless n = 4, 6, 10 but by inspection
n = 4 is clearly impossible. Valid constructions for n = 6 and n = 10 are (2, 2, 1, 1, 3) and
(2, 3, 3, 1, 5, 2, 4, 1, 1) respectively.

Q13. (35 points) Five horses take part in a race. How many ways can the horses finish if
arbitrary ties are allowed?

(source: David 3)
Solution: We separate into cases based on partitions of 5 as representations of tied group-
ings.

• 5 = 1 + 1 + 1 + 1 + 1 represents no ties, which contributes 5! = 120 finishes.

• 5 = 1 + 1 + 1 + 2 represents one two-horse tie, which contributes
(
5
2

)
· 4 · 3! = 240

finishes (select the two horses to tie, select what ranking they receive, permute the
remaining horses)

• 5 = 1 + 1 + 3 represents one three-horse tie, which contributes
(
5
3

)
· 3 · 2! = 60

finishes (select the three horses to tie, select what ranking they receive, permute the
remaining horses)



• 5 = 1 + 4 represents one four-horse tie, which contributes
(
5
4

)
· 2 = 10 finishes (select

the four horses to tie, select if they come first or second)

• 5 = 5 represents one five-horse tie, which contributes 1 finish.

• 5 = 1+2+2 represents two two-horse ties, which contributes
(
5
2

)
·
(
3
2

)
·3 = 90 finishes

(select the higher-ranked pair, then the lower ranked pair, then the arrangement of
pairs and individual)

• 5 = 2 + 3 represents one two-horse tie and one three-horse tie, which contributes(
5
2

)
· 2 = 20 finishes (select the tied pair, then whether they come first or second)

The total number of possibilities is 120 + 240 + 60 + 10 + 1 + 90 + 20 = 541 finishes.

Remark. It’s well known that the answer for n horses is
∑∞

m=1
mn

2m+1 . (Sequence A000670
in the OEIS)

Q14. (35 points) For positive integers n and k, define Mn,k to be the k × k matrix such
that for all 1 ≤ i, j ≤ k, the (i, j)th entry is n

i+j
2

−1. Find the sum of all positive integers
n for which there exists a positive integer k such that M31

n,k = 31M30
n,k.

(source: Chris 1)
Solution: Note that M2

n,k = (1 + n + · · · + nk−1)Mn,k and so we must have 31 = 1 + n +

· · · + nk−1. Note that k ≥ 2 since Mn,1 =
[
1
]

the 1 × 1 identity matrix which clearly
doesn’t work, and (n, k) = (1, 31) works. Otherwise, n ≥ 2 =⇒ 31 > nk−1 ≥ 2k−1 and
so k ≤ 5. We now manually check, and find solutions (2, 5), (5, 3), (30, 2) for an answer of
1 + 2 + 5 + 30 = 38.

Q15. (35 points) When given a polygon, Timmy tries to paint its vertices without painting
the same vertex twice. However, Timmy is blind and he may accidently paint a vertex
adjacent to the one he intends to paint without realizing.
Given a 7D hypercube, how many vertices can Timmy paint while guaranteeing that he
doesn’t paint the same vertex twice?

(source: Dougal 1)
Solution: When Timmy aims to paint a vertex, there are 7 other vertices he could paint.
Thus one attempt blocks out 8 possible vertices. Thus he can paint at most 27

8 = 16 times.
It turns out that this Hamming code is perfect and so the answer is 16.

Q16. (35 points) A cubic polynomial P has each of its coefficients uniformly and indepen-
dently sampled from {1, 2, . . . , 100}. What is the probability that there does not exist an
integer n such that P (n) is divisible by 5?



Give your answer in the form a
b , where a, b are positive integers with gcd(a, b) = 1.

(source: David 2)

Solution: Note that we might as well be sampling from residues modulo 5. It suffices to do
inclusion-exclusion computations to find the number of polynomials P having any residue
modulo 5 as a root. Noting that only one cubic polynomial P (considered modulo 5) has all
five residues modulo 5 as a root (the zero polynomial), but otherwise in order to guarantee
d given roots we are simply forced to make 1 out of 5d selections, due to 5 being prime
meaning that the system solving works out, we thus get(

5

1

)
1

5
−
(
5

2

)
1

25
+

(
5

3

)
1

125
−
(
5

4

)
1

625
+

1

625
=

421

625

as the probability that P does have a root modulo 5. Thus the answer is its complement,
204
625 .

Q17. (40 points)

x ∈ X,S : X → X

∀m,n ∈ N ∪ {0},m 6= n =⇒ Sm(x) 6= Sn(x)

N = {Sn(x)|n ∈ N ∪ {0}}
P : N ×N → N, ∀m,n ∈ N ∪ {0}, P (Sm(x), Sn(x)) := Sm+n(x)

∀m ∈ N ∪ {0}, Pm : N → N,Pm(y) := P (Sm(x), y)

M : N ×N → N, ∀m,n ∈ N ∪ {0},M(Sm(x), Sn(x)) := Pn
m(x)

∀y ∈ N,L(y) = {z ∈ N |(∃w ∈ N,w 6= x)(P (z, w) = y)}
I = {y ∈ N |(@w, z ∈ L(y))(M(w, z) = y))}
H = {Sn(x)|n ∈ N ∪ {0}, n ≤ 100}
|I ∩H| =?

(source: Chris 7)
Solution: Treat S as a successor function. N reconstructs Z≥0, P reconstructs addition
of two numbers, Pm reconstructs the function x 7→ x+m, M reconstructs multiplication,
L(y) is the set of numbers less than y, I represents the set of primes and H is the set of
numbers at most 100. Thus |I ∩H| is the number of primes at most 100, which is 25.

Q18. (40 points) How many multisets of positive integers A are there with sum of elements
2022 such that for each 1 ≤ m ≤ 2022 there is a unique sub-multiset B of A such that the
sum of the elements of B is m?



(source: David 4)
Solution: First, note that A has exactly 2023 sub-multisets (because exactly one sub-
multiset has sum 0, and every other sub-multiset has sum a positive integer at most 2022
and so is counted in the 2022 unique multisets with sums 1, 2, . . . , 2022). Thus if its ele-
ments a1 < · · · < am appear k1, . . . , km times, then

∑
aiki = 2022 and

∏
(ki + 1) = 2023.

Fix a selection (k1, . . . , km). We claim that for all 1 ≤ j ≤ m − 1,
∑j

i=1 aiki = ai+1 − 1,
by induction. Observe that 1 must be an element of A, and so it is a1. Note that all of
the ai, i ≥ 2, must be larger than k1 or else some sum of 1s will equal ai, contradiction to
uniqueness. However, if none of them equal k1 + 1, then that sum is unachievable. Thus
a2 = k1 + 1, the base case of j = 1. Assume that the inductive statement holds for j = `.
Observe that (a1, . . . , a`) and (k1, . . . , k`) allow one to construct any number from 1 to∑`

i=1 aiki := S. Then for all i > `, ai > S or else we have a contradiction to uniqueness of
sums. But if no ai = S + 1, then S + 1 will be unachievable. Thus a`+1 = S + 1, proving
the statement for j = `+ 1 and completing the induction.

Since we know a1, this means that the ki actually uniquely determine the ai, and so there
is exactly one valid A for each selection of the ki. Thus we only need to determine the
number of ways to factorise 2023 with order. These are 2023, 7 × 289, 289 × 7, 17 × 119,
119× 17, 7× 17× 17, 17× 7× 17, 7× 17× 17 for a total of 8 such A. Q19. (40 points)

In the following, all polygons have their vertices listed in anticlockwise order.
Sharky is playing with his favourite square ABCD. Today, he decides to draw a triangle
ADE, and two squares EDFG and AEHI. To his surprise, the sum of the areas of the
three polygons he drew is equal to the area of his favourite square.
Let α be the (positive) angle measure of ∠AED in radians. Compute b50αc.

(source: Chris 9)

Solution: Let a, b, c be the lengths of sides AD, DE, EA. Then 1
2bc sin(α) + b2 + c2 =

a2 = b2+c2−2bc cos(α) and so sin(α) = −4 cos(α). Thus cos(α) = − 1√
17

, so sin
(
α− π

2

)
=

1√
17

≈ 0.2425. Using sin(x) ≈ x − x3

6 , α is a bit less than π
2 + 0.245 ≈ 1.816 (In fact, it’s

about 1.8158). Thus b50αc = 90.

Remark. It’s only needed to use sin(x) ≤ x and 1√
17

< 0.25 with both of these approxima-
tions relatively close to get that 1.8 < α < 1.82 is reasonable.

Q20. (40 points) You have seven coins in a line, of which five show heads and two show tails.
Each minute, you select a random number x ∈ {1, 2, 3, 4, 5, 6, 7} (uniformly distributed)
and flip the xth coin from the left. What is the expected number of flips until all seven



coins simultaneously show heads (for the first time)?
(source: Chris 8)

Solution: Let n replace 7 and let Ei be the answer when 5 is replaced by i. Also denote
xi = Ei − Ei+1. Then x0 = 1 because if zero coins show heads, any flip will gain a head.
Note Ei =

i
n(Ei−1 + 1) + n−i

n (Ei+1 + 1) so n−i
n (Ei − Ei+1) = i

n(Ei−1 − Ei) + 1. Hence
xi =

i
n−ixi−1 +

n
n−i . It follows that

xn−1 =
n−1∑
i=0

n

n− i

n−1∏
j=i+1

j

n− j
=

n−1∑
i=0

n!

i!(n− i)!
= 2n − 1

and xn−2 =
1

n−1(xn−1 − n) = 2n−n−1
n−1 . Letting n = 7, since E7 = 0, E5 = x5 + x6 = 147.

Q21. (40 points)
Compute

1√
13

(−3 +
√
13

2

)6

−

(
−3−

√
13

2

)6
 .

(source: Enda 4)
Solution: Let (xi)

∞
i=0 be a sequence defined by x0 = 0, x1 = 1, and for n ≥ 2, xn =

xn−2 − 3xn−1. Then the characteristic equation for this linear recurrence is λ2 + 3λ− 1 =

0, so λ = −3±
√
13

2 . It’s well known that therefore xn = A
(
−3+

√
13

2

)n
+ B

(
−3−

√
13

2

)n
for some constants A, B. x0 = 0 implies that A + B = 0, while x1 = 1 implies that
−3

2(A + B) +
√
13
2 (A − B) = 1, so that A − B = 2√

13
and so A = 1√

13
, B = − 1√

13
. We

are asked to compute x6. We have x2 = −3, x3 = 10, x4 = −33, x5 = 109, x6 = −360 as
required.

Q22. (Up to 42 points) Submit a positive integer k, as well as an arrangement of m primes
in a circle such that for any two primes p, q next to each other in the circle, pq = x2+x+k
for some positive integer x. You will be scored based on when you submit and the value
of m (earlier and larger are better, respectively).

(source: Chris 6)
Solution: IMO 2022/3 asks students to prove that for a set S of odd prime numbers,
and fixed positive integer k, there is at most one way to arrange the elements of S in
a circle with the property described in the question. It appears that this statement is
quite silly, since surely large rings of primes like this do not exist? Well, see post #30 at
https://artofproblemsolving.com/community/c6h2883213p25635143 for a set S with
k = 41 and m = 385. (Funnily enough, n2 + n + 41 the “prime-generating polynomial”
makes an appearance!)

https://artofproblemsolving.com/community/c6h2883213p25635143

