# Revision Workshop Calculus 2 (MAST10006) 

Christopher Tran
Committee Member

Melbourne University Maths and Stats Society
MUMS Revision Workshop, Semester 12024


1. Limits and continuity

- Question 1
- Limit laws and continuity
- Sandwich theorem

2. Convergence of series

- Questions 2 and 3
- Canonical lower and upper bounds
- Estimation

3. Hyperbolic trigonometry

- Questions 4 and 5
- Definitions
- Using the formula sheet

4. Integration

- Question 6
- Complex exponential
- Integration by parts
- Substitution theorem and what to substitute

5. Multivariable functions

- Question 14
- Definition of directional derivative
- Tangent planes
- Question 13
- Critical points
- Hessian test


## 6. ODEs

- Question 7
- Integrating factor
- Technical details
- Question 8
- Proportional things
- Separable equations
- Interpretation
- Question 10
- Second-order linear with constant coefficients
- Guessing particular solutions
- Question 11
- Springs

If $L, M, a, k \in \mathbb{R}$ and $f, g$ are functions $\mathbb{R} \rightarrow \mathbb{R}$ with

$$
\lim _{x \rightarrow a} f(x)=L, \quad \lim _{x \rightarrow a} g(x)=M
$$

(the existence of these limits is crucial) then we have

$$
\begin{aligned}
\lim _{x \rightarrow a}(f(x) \pm g(x)) & =L \pm M \\
\lim _{x \rightarrow a} f(x) \cdot g(x)^{ \pm 1} & =L \cdot M^{ \pm 1} \\
\lim _{x \rightarrow a} k \cdot f(x) & =k L
\end{aligned}
$$

Continuity: $h: \mathbb{R} \rightarrow \mathbb{R}$ is continuous at $a$ if

$$
\lim _{x \rightarrow a} h(x)=f(a)
$$

(always write this - it's the definition). Most of our favourite functions are continuous over their domain, like polynomials, $e^{x}, \log$, trigonometric functions.

Continuity: if $f, g$ are functions $\mathbb{R} \rightarrow \mathbb{R}$ with $f$ continuous at $a \in \mathbb{R}$, then

$$
\lim _{x \rightarrow a} f(g(x))=f\left(\lim _{x \rightarrow a} g(x)\right)
$$

(passing the limit into the function).
L'Hopital's rule: if $f, g$ are differentiable (except perhaps at some $a \in \mathbb{R}$ ), and $\frac{f(x)}{g(x)}$ is indeterminate at $x=a$, then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

Sandwich theorem: If $f, g, h$ are continuous at $x=a$ and $f(x) \leq g(x) \leq h(x)$, then

$$
\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x)=L \Longrightarrow \lim _{x \rightarrow a} g(x)=L
$$

(Tip: most commonly used when $L=0$ ).

## Limits and continuity

Question 1
(a)

$$
\lim _{\theta \rightarrow 0} \cos \left(\frac{\cosh (\theta)-1}{\theta}\right)
$$

(b)

$$
\lim _{x \rightarrow 0} x^{2} \tanh \left(\frac{1}{x}\right)
$$

(c) Determine the continuity of $f(x)$ at $x=0$, where

$$
f(x)= \begin{cases}\cos \left(\frac{\cosh (\theta)-1}{\theta}\right) & x<0 \\ a & x=0 \\ x^{2} \tanh \left(\frac{1}{x}\right) & x>0\end{cases}
$$

(a) Bring the limit into the cos and then use L'Hopital. (Answer: 1)

$$
\begin{aligned}
& \lim _{\theta \rightarrow 0} \cos \left(\frac{\cosh (\theta)-1}{\theta}\right) \\
= & \cos \left(\lim _{\theta \rightarrow 0} \frac{\cosh (\theta)-1}{\theta}\right) \\
= & \cos \left(\lim _{\theta \rightarrow 0} \frac{\sinh (\theta)}{1}\right) \\
= & \cos (\sinh (0)) \\
= & \cos (0)=1
\end{aligned}
$$

by continuity of cos

$$
\text { by l'Hopital's rule }\left(\frac{0}{0}\right)
$$

by limit laws and continuity of sinh

Justifications are essential for marks! E.g. on assignment 1, this was +2 marks for the result and +1 mark each for stating I'Hopital's rule, limit laws, and continuity of cosine/sinh.
(b) Sandwich theorem: remember $-1 \leq \tanh ($ anything $) \leq 1$. (Answer: 0)
(c) Left- and right-hand limits differ, so the limit does not exist at the point. By the definition of continuity (state it), not continuous.

Most basic lower-bounding technique: every term is at least some nonzero thing.
Question 2: Find all $c \in \mathbb{R}$ such that $\sum_{n=1}^{\infty} \arctan (c n)$ converges. Most basic upper-bounding technique: upper bound terms by some series you know converges.
Question 3: Determine the convergence of the following series:
(a)

$$
\sum_{n=1}^{\infty} \frac{3 n^{2}+\cos ^{2}(n)+2 n}{4 n^{5}+n^{2}-1}
$$

(b)

$$
\sum_{n=1}^{\infty} n^{-n} n!
$$

Question 2

- If $c>0, \arctan (c n) \geq \arctan (c)>0$ for $n \geq 1$ so sum goes to $\infty$; similarly, if $c<0$, sum goes to $-\infty$
- If $c=0$ it's a sum of zeroes...


## Convergence of series

Question 3 review

## Question 3

(a) Convergent

- Notice that basically numerator degree $<$ denominator degree
- Numerator $\leq 6 n^{2}$ and denominator $\geq 4 n^{5}$ so sum is $\frac{3}{2} \times$ of sum of $\frac{1}{n^{3}}$ which converges ( $p$-series with $p>1$ !)
(b) Example marks provided based on mid-semester. Since $a_{n}=\frac{n!}{n^{n}}>0$ for all $n \geq 1$, we can use ratio test. ( +2 marks for checking these terms are greater than $0,+2$ marks for stating we can use ratio test.)
We have

$$
\begin{aligned}
\frac{a_{n+1}}{a_{n}} & =\frac{(n+1)!}{(n+1)^{(n+1)}} \frac{(n)^{(n)}}{(n)!} \\
& =\frac{(n+1) n!}{n!} \frac{n^{n}}{(n+1)(n+1)^{n}} \\
& =\frac{n^{n}}{(n+1)^{n}}
\end{aligned}
$$

( +3 marks for correct ratio)

## Convergence of series

So

$$
\begin{aligned}
L & =\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}} \\
& =\lim _{n \rightarrow \infty}\left(\frac{n}{n+1}\right)^{n} \\
& =\lim _{n \rightarrow \infty}\left(\frac{1}{\left(1+\frac{1}{n}\right)^{n}}\right) \\
& =\frac{1}{\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}} \\
& =\frac{1}{e}<1
\end{aligned}
$$

by limit law
standard limit
( +3 for the correct limit result, +2 for stating that $L$ is less than 1.)
Therefore by ratio test, the series $\sum_{i=1}^{\infty} \frac{n!}{n^{n}}$ converges. ( +1 for re-stating ratio test, +3 for the correct answer (convergence).)

1. Definitions
$-\sinh (x)=\frac{1}{2}\left(e^{x}-e^{-x}\right), \cosh (x)=\frac{1}{2}\left(e^{x}+e^{-x}\right)$

- All others defined analogously to circular trig functions

2. Key properties
$\rightarrow \cosh (x) \geq 1,-1 \leq \tanh (x) \geq 1$ since $|\cosh (x)| \geq|\sinh (x)|$ (follows from Pythagorean identity)
3. Using the formula sheet

- Formula sheet has definitions of sinh, cosh and logarithmic formulas for arcsinh, arccosh, arctanh (VERY USEFUL)
- Question 4(b): Prove $\operatorname{arcsech}(x)=\operatorname{arctanh}\left(\sqrt{1-x^{2}}\right)$
- Question 5: Solve $\cosh (x)+\sinh (x)=-2022$ over $x \in \mathbb{R}$ and then $x \in \mathbb{C}$
- Question 4(b): Prove sech $\left(\operatorname{arctanh}\left(\sqrt{1-x^{2}}\right)\right)=x$ using formula sheet and definitions (lots of algebra - make sure you are careful about definitions)
- Question 5: $\cosh (x)+\sinh (x)=e^{x}$ for all $x \in \mathbb{C}$
(a) If $x \in \mathbb{R}, e^{x}>0>-2022$, no solutions
(b) If $x \in \mathbb{C}$, write $x=a+b i ;\left|e^{b i}\right|=1$ so
$\left|e^{a}\right|=2022 \Longrightarrow a=\log (2022)$.
Looking at $e^{b i}=\cos (b)+i \sin (b)=-1$ (formula sheet), $b=(2 k+1) \pi, k \in \mathbb{Z}$.
$e^{a x} \cos (b x)$ and $e^{a x} \sin (b x)$ are the real and imaginary parts of $e^{(a+b i) x}=e^{a x} \operatorname{cis}(b x)$. Note that we can swap $\frac{\mathrm{d}}{\mathrm{dx}}, \int$ with Im, Re; thus we can bring integrals and derivatives inside; the integral and derivative of $e^{\alpha x}$ where $\alpha \in \mathbb{C}$ is the same as normal.
Integration by parts:

$$
\int u \frac{\mathrm{~d} v}{\mathrm{~d} x} \mathrm{~d} x=u v-\int v \frac{\mathrm{~d} u}{\mathrm{~d} x} \mathrm{~d} x
$$

should be viewed as allowing you to differentiate some terrible function $u$ at the cost of integrating some (better) function $\frac{\mathrm{d} v}{\mathrm{dx}}$. Common mnemonic LIATE for which function to differentiate first - Logarithms, Inverse (trig), Algebraic (polynomials), Trig, Exponentials

Substitution theorem: If $g$ is a "nice" function (injective, differentiable), then we can substitute $t=g(x)$ to get

$$
\int f(g(x)) \frac{\mathrm{d} t}{\mathrm{~d} x} \mathrm{~d} x=\int f(t) \mathrm{d} t
$$

where if we integrated from $a$ to $b$ we now integrate from $g(a)$ to $g(b)$. We can also do this when $g$ is secretly some inverse function, like if we want to let $x=\sin (t)$ in an integral we can do $t=\arcsin (x)$.

- "Ad hoc substitutions"
- Things like $u=P(x)$ ( $P$ some polynomial), $u=\log (x)$, $u=\tan (x)$, etc.
- Do this when the integral seems to be "in terms of" this function
- Trig substitution recommendations (below table reproduced from MAST10019 notes)

| Problem Term | Substitution | Domain |
| :---: | :---: | :---: |
| $\left(c^{2}+x^{2}\right)^{k}, k \in \mathbb{Z}$ | $x=c \tan (t)$ | $\mathbb{R}$ |
| $\left(c^{2}+x^{2}\right)^{k}, k \notin \mathbb{Z}$ | $x=c \sinh (t)$ | $\mathbb{R}$ |
| $\left(c^{2}-x^{2}\right)^{k}, k \in \mathbb{Z}$ | It's a polynomial... | $\mathbb{R} \backslash\{-c, c\}$ |
| $\left(c^{2}-x^{2}\right)^{k}, k \notin \mathbb{Z}$ | $x=c \sin (t)$ | $(-c, c)$ |
| $\left(x^{2}-c^{2}\right)^{k}, k \in \mathbb{Z}$ | It's a polynomial... | $\mathbb{R} \backslash\{-c, c\}$ |
| $\left(x^{2}-c^{2}\right)^{k}, k \notin \mathbb{Z}$ | $x=c \cosh (t)$ | $(-\infty, c) \cup(c, \infty)$ |

(a) (Explicitly with the complex exponential)

$$
\int e^{-2 x} \sin (5 x) d x
$$

(b)

$$
\int \sqrt{9+x^{2}} \mathrm{~d} x
$$

(c)

$$
\int x^{2} \log \left(x^{2}\right) d x
$$

(a) Imaginary part of $e^{(5 i-2) x}$; integrate. Then expand $e^{(5 i-2) x}=e^{-2 x}(\cos (5 x)+i \sin (5 x))$ and use complex conjugates for the $\frac{1}{5 i-2}$ term. Make sure initial constant of integration is complex $(+c+d i)$
(b) As per the table, let $x=3 \sinh (t)$; once you get $\frac{9}{4} \sinh (2 t)+\frac{9 t}{2}+C$, use double angle formula and Pythagorean identity to get

$$
\sinh (2 t)=2 \sinh (t) \sqrt{\sinh ^{2}(t)+1}
$$

before substituting back $t=\operatorname{arcsinh}\left(\frac{x}{3}\right)$.
(c) Integrate by parts: differentiate $u=\log \left(x^{2}\right)$ and integrate $\frac{\mathrm{d} v}{\mathrm{~d} x}=x^{2}$ as per LIATE

- Partial derivatives $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ tell us the slope in the $x$ - and $y$ directions: $\nabla f=\left(f_{x}, f_{y}\right)$.
- Tangent plane is uniquely determined by slopes in these directions: tangent plane at $(x, y)=(a, b)$ is
$z=f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)+f(a, b)$.
- Directional derivative is really just direction on the plane. But this has a neat formula: $\mathbf{D}_{\hat{\mathbf{u}}} f=\nabla f \cdot \hat{\mathbf{u}}$.

- Finding critical points
- These are the points where the tangent plane is horizontal, i.e. parallel to the $x y$-plane. $z=c$ for some $c$
- Find these by solving $f_{x}=f_{y}=0$.
- Classifying critical points
- Hessian is $H_{f}(x, y)=f_{x x} f_{y y}-f_{x y}^{2}$ (remember $f_{x y}=f_{y x}$ )
- If $H_{f}<0$, saddle point.

If $H_{f}>0$, local extremum: then check $f_{x x}$, if $f_{x x}>0$ then local min and if $f_{x x}<0$ then local max; the second derivative test! Note that since $H_{f}>0, f_{x x} f_{y y}>f_{x y}^{2} \geq 0$, thus $f_{x x}, f_{y y}$ have the same sign so you could do this for $y$ if you wanted. If $H_{f}=0$, test inconclusive.

- Question 14:
(a) Find the directional derivative in direction towards origin at $(1,5)$ if the tangent plane at $(1,5)$ has equation $-2 x+3 y-z=17$
(b) Find $\left.\nabla f\right|_{(2022,-7)}$ if the directional derivatives at $(2022,-7)$ in directions $\theta=\frac{\pi}{4}, \phi=-\frac{\pi}{4}$ are $0,-8$ respectively
- Question 13: Find and classify all critical points of $f(x, y)=\frac{1}{2} y^{2}+\frac{1}{3} x^{3} y-x y+2$.
- Question 14:
(a) $z=-2 x+3 y-17$ implies $\nabla f=(-2,3)$ at $(1,5)$. Take dot product with unit direction vector $\frac{1}{\sqrt{26}}(-1,-5)$.
(b) The unit direction vectors are $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ and $\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$; take dot product with $\nabla f:=(a, b)$ and solve for $a, b$
- Question 13:
- $f_{x}=x^{2} y-y$ and $f_{y}=y+\frac{1}{3} x^{3}-x$.

Solving $f_{x}=0$ gives $y=1$ or $x= \pm 1$. Solving $f_{y}=0$ under these gives $(x, y) \in\left\{(0,0),( \pm \sqrt{3}, 0),\left(1, \frac{2}{3}\right),\left(-1,-\frac{2}{3}\right)\right.$.

- $f_{x x}=2 x y, f_{y y}=1$ and $f_{x y}=f_{y x}=x^{2}-1$.

Hessian test tells us the first three are saddle points ( $H_{f}=-1$, $-4,-4$ respectively), and the last two are local extrema ( $H_{f}=\frac{4}{3}$ both times). Checking $f_{x x}$ we get $\frac{4}{3}$ both times again so both are local minima.

1. Separable equations, i.e. $\frac{\mathrm{d} y}{\mathrm{~d} x}=f(x) g(y)$ Solution is to integrate: $\int \frac{1}{g(y)} \mathrm{d} y=\int f(x) \mathrm{d} x$.
2. Integrating factor for first order linear, i.e. $\frac{\mathrm{d} y}{\mathrm{~d} x}+P(x) y=Q(x)$ Idea: want to multiply by some $I(x)$ so that the LHS $I(x) y^{\prime}+I(x) P(x) y$ is the derivative of $(I(x) y)$. This means $I^{\prime}(x)=I(x) P(x)$, which is a separable equation: solution is $I(x)=\exp \left(\int P(x) \mathrm{d} x\right)$ (don't need $+C$ because any antiderivative of $P$ works)
Now $(I(x) y)^{\prime}=I(x) Q(x)$, thus

$$
y=\frac{1}{I(x)} \int I(x) Q(x) \mathrm{d} x
$$

(the $+C$ is very important this time around)
3. Second-order linear with constant coefficients, i.e. $a y^{\prime \prime}+b y^{\prime}+c y=f$.

- Easier case: $f=0 . e^{\alpha x}$ has nice derivatives, so why don't we try that? LHS evaluates to $\left(a \alpha^{2}+b \alpha+c\right) e^{\alpha x}$ and we realise we want $\alpha$ to be a solution of the characteristic equation $a \lambda^{2}+b \lambda+c=0$.
Note that if the characteristic equation has a double root $\alpha$ we also get the solution $y=x e^{\alpha x}$, and if the roots are complex (say $\alpha \pm \beta i$ ) then via complex exponential we can find two solutions $e^{\alpha x} \cos (\beta x)$ and $e^{\alpha x} \sin (\beta x)$ instead.
Once we have two different solutions, e.g. $e^{\alpha x}, e^{\beta x}$ (first case) we just have $y=A e^{\alpha x}+B e^{\beta x}$.

3. Second-order linear with constant coefficients, continued

- Harder case: $f \neq 0$. Principle of superposition says that the solution is $y=y_{H}+y_{P}$ where $y_{H}$ solves the Homogenous version, and $y_{P}$ is a random solution to the Particular equation. But what to guess for $f$ ? Well, there are some basic ideas. Make sure you explain what guess you substituted
- If $f$ is a polynomial of degree $n$, substitute $y$ to be a generic polynomial of degree $n$.
- If $f$ is $\sin$ or $\cos$, try something like $A \cos (x)+B \sin (x)$
- If $f$ is some $e^{\gamma x}$, guess $y=C e^{\gamma x}$.

Warning: if $\gamma$ is already a root then this won't work (you'll get zero). Try $y=C x e^{\gamma x}$ if it's a single root and $y=C x^{2} e^{\gamma x}$ if it's a double root.
Note that if $f$ consists of the sum of more than one of these, then again by principle of superposition, you can split this up into more particular solutions, say $y p_{1}+y P_{2}$.

- Springs
- Recall from physics: spring force $F_{s}=-k x$ and air resistance $R=-\beta v$, as well as gravity $W=m g$ and overall $F=m a$ where $x, v, a$ are displacement, velocity, acceleration
- Draw a diagram to get the ODE: it will be second order linear homogenous if the reference point is the equilibrium point, because then the equation becomes $m a=m g-k(s+y)-\beta y^{\prime} \Longrightarrow m y^{\prime \prime}+\beta y^{\prime}+k y=0(s$ is extension at equilibrium, $y$ the distance below equilibrium point).
- Make sure you make good reference to first principles, i.e. Newton's law


## Damping and long term behaviour

The key here is to look at the characteristic equation! Recalling our second-order linear homogenous stuff, if the characteristic equation has:

- Two real roots: solution is $A e^{a t}+B e^{b t}$, called "overdamped" (spring stabilises to a point "too quickly"
- One real root: solution is $A e^{\lambda t}+B t e^{\lambda t}$, "critically damped" (stops perfectly)
- Two complex roots: solution is $y=A e^{a t} \cos (b t)+B e^{a t} \sin (b t)$, "underdamped" (oscillates as it comes to a stop)
- Special case: if $a=0$ (i.e. $\beta=0$, no damping): $y=A \cos (b t)+B \sin (b t)$ (simple harmonic motion)
Fun fact: can add a driving force (equivalent to $f \neq 0$, e.g.
$f=\cos (\Omega t))$. Resonant frequency $\Omega$ breaks the spring.
- Question 7: Substitute $u=e^{y}$ into

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\operatorname{arctanh}(x)}{x^{2} e^{y}}-\frac{2}{x}
$$

and hence solve the ODE.

- Question 8: A beehive of 100,000 bees has a virus outbreak (no recovery, and no bees die). If $I(t)$ is the number (in thousands) of bees infected at time $t$ days, and the rate of increase of $I$ with respect to $t$ is proportional to the product of the numbers of infected and uninfected bees at time $t$, then:
- Show that

$$
\frac{\mathrm{d} I}{\mathrm{~d} t}=\beta I(100-I)
$$

for some $\beta$.

- Solve the ODE, first generally, and then subject to 100 initial infections and 1000 total after 3 days.
- Comment on $I(t)$ as $t \rightarrow \infty$.
- Question 7: substitution gives

$$
\frac{\mathrm{d} u}{\mathrm{~d} x}=\frac{\operatorname{arctanh}(x)}{x^{2}}-\frac{2 u}{x}
$$

and this is clearly integrating factor. Rearrange correctly! When solving for $u$, will need to find $\int \operatorname{arctanh}(x) \mathrm{d} x$. Using integration by parts stuff from before, set $\frac{\mathrm{d} v}{\mathrm{~d} x}=1$. Don't forget to get back to $y$ after finding $u$.

- Question 8: separable; I integral involves (simple) partial fractions. Handle constant cases separately when solving. Should get

$$
I(t)=\frac{100}{1+A e^{-100 \beta t}}
$$

which then gets $A=999, \beta=\frac{1}{300} \log \left(\frac{111}{11}\right)$. As $t \rightarrow \infty$, the $A e^{\text {stuff }}$ term disappears, so $I(t) \rightarrow 100$ which means every bee is infected.

- Question 10: Solve

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-4 \frac{\mathrm{~d} y}{\mathrm{~d} x}+4 y=2 x+18 e^{5 x}
$$

if $y(0)=\frac{1}{2}, y^{\prime}(0)=6$.

- Question 11: 4kg mass suspended from spring with spring constant $k \mathrm{~N} \mathrm{~m}^{-1}$; air resistance with damping constant $\beta=12 \mathrm{~N} \mathrm{~s} \mathrm{~m}^{-1}$ and gravity with $g=9.8 \mathrm{~m} \mathrm{~s}^{-2}$ (no other forces).
- Derive the equation of motion.
- Which of $k \in\{4,8,16\}$ would result in oscillations?
- If $k=4$, give an example of an extra external force $f(t)$ which would result in long-term constant amplitude oscillations (or explain why one doesn't exist)
- Question 10:
- First solve homogenous: $\lambda^{2}-4 \lambda+4$ has double root $\lambda=2$ so homogenous solution $y_{H} A e^{2 x}+B x e^{2 x}$.
- First particular: $f=2 x$. Let $y_{P_{1}}=C x+D$ and solve; $C=D=\frac{1}{2}$.
- Second particular: $f=18 e^{5 x}$. Let $y_{P_{2}}=F e^{5 x}$ and solve; $F=2$.
- Put it all together: $y=A e^{2 x}+B x e^{2 x}+\frac{x}{2}+\frac{1}{2}+2 e^{5 x}$.
- Use conditions $y(0)=\frac{1}{2}, y^{\prime}(0)=6$ to solve for $A, B$.
- Question 11:
- Substitute in the numbers: $4 \frac{\mathrm{~d}^{2} y}{\mathrm{~d} t^{2}}+12 \frac{\mathrm{dy}}{\mathrm{d} t}+k y=0$.
- Want underdamped, so discriminant of characteristic $144-16 k<0 \Longrightarrow k>9$; thus $k=16$ only
- For $k=4$, overdamped (long-term stabilises position); add driving force such as $\cos (t)$ which induces a long-term constant sinusoidal oscillation (as by principle of superposition, the added $y_{P}=A \cos (t)+B \sin (t)$ for some $\left.A, B\right)$
- Question 9: Sketch the solutions to $\frac{\mathrm{d} y}{\mathrm{~d} x}=\sin (y), x \geq 0$, $0 \leq y \leq 4 \pi$ without solving it. (Sketch the slope field and then trace the solutions, including equilibrium solutions $y=0$, $y=\pi y=2 \pi, y=3 \pi, y=4 \pi)$
- Question 12: Consider $f(x, y)=6-\sqrt{x^{2}+y^{2}}$ and the surface $S$ given by $z=f(x, y)$.
- Find the level curve $z=2$ and sketch it (solve and sketch $f(x, y)=2)$
- Find the level curve which passes through $(x, y)=(3,4)$. (solve $f(x, y)=f(3,4)$ )
- Sketch the cross-section of $S$ in the $x z$-plane (set $y=0$ )
- Sketch $S$ (it's a cone)
- Any questions?

