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Overview
List of topics

1. Limits and continuity
▶ Question 1

▶ Limit laws and continuity
▶ Sandwich theorem

2. Convergence of series
▶ Questions 2 and 3

▶ Canonical lower and upper bounds
▶ Estimation

3. Hyperbolic trigonometry
▶ Questions 4 and 5

▶ Definitions
▶ Using the formula sheet
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Overview
List of topics

4. Integration
▶ Question 6

▶ Complex exponential
▶ Integration by parts
▶ Substitution theorem and what to substitute

5. Multivariable functions
▶ Question 14

▶ Definition of directional derivative
▶ Tangent planes

▶ Question 13
▶ Critical points
▶ Hessian test
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Overview
List of topics

6. ODEs
▶ Question 7

▶ Integrating factor
▶ Technical details

▶ Question 8
▶ Proportional things
▶ Separable equations
▶ Interpretation

▶ Question 10
▶ Second-order linear with constant coefficients
▶ Guessing particular solutions

▶ Question 11
▶ Springs
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Limits and continuity
Limit laws and continuity

If L, M, a, k ∈ R and f , g are functions R → R with

lim
x→a

f (x) = L, lim
x→a

g(x) = M

(the existence of these limits is crucial) then we have

lim
x→a

(f (x)± g(x)) = L±M

lim
x→a

f (x) · g(x)±1 = L ·M±1

lim
x→a

k · f (x) = kL

Continuity: h : R → R is continuous at a if

lim
x→a

h(x) = f (a)

(always write this - it’s the definition). Most of our favourite functions are continuous
over their domain, like polynomials, ex , log, trigonometric functions.
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Limits and continuity
Fancy limit methods

Continuity: if f , g are functions R → R with f continuous at a ∈ R, then

lim
x→a

f (g(x)) = f
(
lim
x→a

g(x)
)

(passing the limit into the function).

L’Hopital’s rule: if f , g are differentiable (except perhaps at some a ∈ R), and f (x)
g(x)

is indeterminate at x = a, then

lim
x→a

f (x)

g(x)
= lim

x→a

f ′(x)

g ′(x)
.

Sandwich theorem: If f , g , h are continuous at x = a and f (x) ≤ g(x) ≤ h(x), then

lim
x→a

f (x) = lim
x→a

h(x) = L =⇒ lim
x→a

g(x) = L.

(Tip: most commonly used when L = 0).
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Limits and continuity
Question 1

(a)

lim
θ→0

cos

(
cosh(θ)− 1

θ

)
(b)

lim
x→0

x2 tanh

(
1

x

)
(c) Determine the continuity of f (x) at x = 0, where

f (x) =


cos
(
cosh(θ)−1

θ

)
x < 0

a x = 0

x2 tanh
(
1
x

)
x > 0
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Limits and continuity
Question 1 review

(a) Bring the limit into the cos and then use L’Hopital. (Answer:
1)

lim
θ→0

cos

(
cosh(θ)− 1

θ

)
=cos

(
lim
θ→0

cosh(θ)− 1

θ

)
by continuity of cos

= cos

(
lim
θ→0

sinh(θ)

1

)
by l’Hopital’s rule (

0

0
)

= cos(sinh(0)) by limit laws and continuity of sinh

= cos(0) = 1

Justifications are essential for marks! E.g. on assignment 1, this
was +2 marks for the result and +1 mark each for stating
l’Hopital’s rule, limit laws, and continuity of cosine/sinh. 8



Limits and continuity
Question 1 review

(b) Sandwich theorem: remember −1 ≤ tanh(anything) ≤ 1.
(Answer: 0)

(c) Left- and right-hand limits differ, so the limit does not exist at
the point. By the definition of continuity (state it), not
continuous.
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Convergence of series
Questions 2 and 3

Most basic lower-bounding technique: every term is at least some
nonzero thing.
Question 2: Find all c ∈ R such that

∑∞
n=1 arctan(cn) converges.

Most basic upper-bounding technique: upper bound terms by some
series you know converges.
Question 3: Determine the convergence of the following series:

(a)
∞∑
n=1

3n2 + cos2(n) + 2n

4n5 + n2 − 1

(b)
∞∑
n=1

n−nn!
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Convergence of series
Question 2 review

Question 2

▶ If c > 0, arctan(cn) ≥ arctan(c) > 0 for n ≥ 1 so sum goes to
∞; similarly, if c < 0, sum goes to −∞

▶ If c = 0 it’s a sum of zeroes...
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Convergence of series
Question 3 review

Question 3

(a) Convergent
▶ Notice that basically numerator degree < denominator degree
▶ Numerator ≤ 6n2 and denominator ≥ 4n5 so sum is 3

2× of
sum of 1

n3 which converges (p-series with p > 1!)
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Convergence of series
Question 3 review, cont.

(b) Example marks provided based on mid-semester.
Since an = n!

nn > 0 for all n ≥ 1, we can use ratio test. (+2
marks for checking these terms are greater than 0, +2 marks
for stating we can use ratio test.)
We have

an+1

an
=

(n + 1)!

(n + 1)(n+1)

(n)(n)

(n)!

=
(n + 1)n!

n!

nn

(n + 1)(n + 1)n

=
nn

(n + 1)n

(+3 marks for correct ratio)
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Convergence of series
Question 3 review, cont.

So

L = lim
n→∞

an+1

an

= lim
n→∞

(
n

n + 1

)n

= lim
n→∞

(
1

(1 + 1
n )

n

)
=

1

limn→∞(1 + 1
n )

n
by limit law

=
1

e
< 1 standard limit

(+3 for the correct limit result, +2 for stating that L is less than 1.)
Therefore by ratio test, the series

∑∞
i=1

n!
nn converges. (+1 for re-stating ratio test,

+3 for the correct answer (convergence).)
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Hyperbolic trigonometry
Overview, Questions 4 and 5

1. Definitions
▶ sinh(x) = 1

2 (e
x − e−x) , cosh(x) = 1

2 (e
x + e−x)

▶ All others defined analogously to circular trig functions

2. Key properties
▶ cosh(x) ≥ 1, −1 ≤ tanh(x) ≥ 1 since |cosh(x)| ≥ |sinh(x)|

(follows from Pythagorean identity)

3. Using the formula sheet
▶ Formula sheet has definitions of sinh, cosh and logarithmic

formulas for arcsinh, arccosh, arctanh (VERY USEFUL)

▶ Question 4(b): Prove arcsech(x) = arctanh(
√
1− x2)

▶ Question 5: Solve cosh(x) + sinh(x) = −2022 over x ∈ R and
then x ∈ C
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Hyperbolic trigonometry
Questions 4 and 5 review

▶ Question 4(b): Prove sech
(
arctanh(

√
1− x2)

)
= x using

formula sheet and definitions (lots of algebra - make sure
you are careful about definitions)

▶ Question 5: cosh(x) + sinh(x) = ex for all x ∈ C
(a) If x ∈ R, ex > 0 > −2022, no solutions
(b) If x ∈ C, write x = a+ bi ; |ebi | = 1 so

|ea| = 2022 =⇒ a = log(2022).
Looking at ebi = cos(b) + i sin(b) = −1 (formula sheet),
b = (2k + 1)π, k ∈ Z.
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Integrals
Complex exponential, integration by parts

eax cos(bx) and eax sin(bx) are the real and imaginary parts of
e(a+bi)x = eax cis(bx). Note that we can swap d

dx ,
∫
with Im, Re;

thus we can bring integrals and derivatives inside; the integral and
derivative of eαx where α ∈ C is the same as normal.
Integration by parts:∫

u
dv
dx

dx = uv −
∫

v
du
dx

dx

should be viewed as allowing you to differentiate some terrible
function u at the cost of integrating some (better) function dv

dx .
Common mnemonic LIATE for which function to differentiate first
- Logarithms, Inverse (trig), Algebraic (polynomials), Trig,
Exponentials
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Integrals, continued
Substitution theorem

Substitution theorem: If g is a “nice” function (injective,
differentiable), then we can substitute t = g(x) to get∫

f (g(x))
dt
dx

dx =

∫
f (t) dt

where if we integrated from a to b we now integrate from g(a) to
g(b). We can also do this when g is secretly some inverse
function, like if we want to let x = sin(t) in an integral we can do
t = arcsin(x).
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Integrals, continued
What to substitute?

▶ “Ad hoc substitutions”
▶ Things like u = P(x) (P some polynomial), u = log(x),

u = tan(x), etc.
▶ Do this when the integral seems to be “in terms of” this

function

▶ Trig substitution recommendations (below table reproduced
from MAST10019 notes)

Problem Term Substitution Domain
(c2 + x2)k , k ∈ Z x = c tan(t) R
(c2 + x2)k , k /∈ Z x = c sinh(t) R
(c2 − x2)k , k ∈ Z It’s a polynomial... R\{−c , c}
(c2 − x2)k , k /∈ Z x = c sin(t) (−c, c)

(x2 − c2)k , k ∈ Z It’s a polynomial... R\{−c , c}
(x2 − c2)k , k /∈ Z x = c cosh(t) (−∞, c) ∪ (c,∞)
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Integrals
Question 6

(a) (Explicitly with the complex exponential)∫
e−2x sin(5x) dx

(b) ∫ √
9 + x2 dx

(c) ∫
x2 log

(
x2
)

dx
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Integrals
Question 6 review

(a) Imaginary part of e(5i−2)x ; integrate. Then expand
e(5i−2)x = e−2x(cos(5x) + i sin(5x)) and use complex
conjugates for the 1

5i−2 term. Make sure initial constant of
integration is complex (+c + di)

(b) As per the table, let x = 3 sinh(t); once you get
9
4 sinh(2t) +

9t
2 + C , use double angle formula and

Pythagorean identity to get

sinh(2t) = 2 sinh(t)

√
sinh2(t) + 1

before substituting back t = arcsinh
(
x
3

)
.

(c) Integrate by parts: differentiate u = log
(
x2
)
and integrate

dv
dx = x2 as per LIATE
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Multivariable functions
Directional derivative, tangent planes

▶ Partial derivatives ∂f
∂x ,

∂f
∂y tell us the slope in the x- and y -

directions: ∇f = (fx , fy ).
▶ Tangent plane is uniquely determined by slopes in these

directions: tangent plane at (x , y) = (a, b) is
z = fx(a, b)(x − a) + fy (a, b)(y − b) + f (a, b).

▶ Directional derivative is really just direction on the plane. But
this has a neat formula: Dûf = ∇f · û.

22



Multivariable functions
Critical points and Hessian test

▶ Finding critical points
▶ These are the points where the tangent plane is horizontal, i.e.

parallel to the xy -plane. z = c for some c
▶ Find these by solving fx = fy = 0.

▶ Classifying critical points
▶ Hessian is Hf (x , y) = fxx fyy − f 2xy (remember fxy = fyx)
▶ If Hf < 0, saddle point.

If Hf > 0, local extremum: then check fxx , if fxx > 0 then local
min and if fxx < 0 then local max; the second derivative test!
Note that since Hf > 0, fxx fyy > f 2xy ≥ 0, thus fxx , fyy have the
same sign so you could do this for y if you wanted.
If Hf = 0, test inconclusive.
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Multivariable functions
Questions 14, 13

▶ Question 14:

(a) Find the directional derivative in direction towards origin at
(1, 5) if the tangent plane at (1, 5) has equation
−2x + 3y − z = 17

(b) Find ∇f |(2022,−7) if the directional derivatives at (2022,−7) in
directions θ = π

4 , ϕ = −π
4 are 0, −8 respectively

▶ Question 13: Find and classify all critical points of
f (x , y) = 1

2y
2 + 1

3x
3y − xy + 2.
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Multivariable functions
Questions 14, 13 review

▶ Question 14:

(a) z = −2x + 3y − 17 implies ∇f = (−2, 3) at (1, 5). Take dot
product with unit direction vector 1√

26
(−1,−5).

(b) The unit direction vectors are
(

1√
2
, 1√

2

)
and

(
1√
2
,− 1√

2

)
; take

dot product with ∇f := (a, b) and solve for a, b

▶ Question 13:
▶ fx = x2y − y and fy = y + 1

3x
3 − x .

Solving fx = 0 gives y = 1 or x = ±1. Solving fy = 0 under
these gives (x , y) ∈ {(0, 0), (±

√
3, 0),

(
1, 2

3

)
,
(
−1,− 2

3

)
.

▶ fxx = 2xy , fyy = 1 and fxy = fyx = x2 − 1.
Hessian test tells us the first three are saddle points (Hf = −1,
−4, −4 respectively), and the last two are local extrema
(Hf =

4
3 both times). Checking fxx we get 4

3 both times again
so both are local minima.
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ODEs
Ways to solve them

1. Separable equations, i.e. dy
dx = f (x)g(y)

Solution is to integrate:
∫

1
g(y) dy =

∫
f (x) dx .

2. Integrating factor for first order linear, i.e. dy
dx +P(x)y = Q(x)

Idea: want to multiply by some I (x) so that the LHS
I (x)y ′ + I (x)P(x)y is the derivative of (I (x)y). This means
I ′(x) = I (x)P(x), which is a separable equation: solution is
I (x) = exp

(∫
P(x) dx

)
(don’t need +C because any

antiderivative of P works)
Now (I (x)y)′ = I (x)Q(x), thus

y =
1

I (x)

∫
I (x)Q(x) dx

(the +C is very important this time around)
26



ODEs
Ways to solve them, continued

3. Second-order linear with constant coefficients, i.e.
ay ′′ + by ′ + cy = f .
▶ Easier case: f = 0. eαx has nice derivatives, so why don’t we

try that? LHS evaluates to (aα2 + bα+ c)eαx and we realise
we want α to be a solution of the characteristic equation
aλ2 + bλ+ c = 0.
Note that if the characteristic equation has a double root α we
also get the solution y = xeαx , and if the roots are complex
(say α± βi) then via complex exponential we can find two
solutions eαx cos(βx) and eαx sin(βx) instead.
Once we have two different solutions, e.g. eαx , eβx (first case)
we just have y = Aeαx + Beβx .
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ODEs
Ways to solve them, continued

3. Second-order linear with constant coefficients, continued
▶ Harder case: f ̸= 0. Principle of superposition says that the

solution is y = yH + yP where yH solves the Homogenous
version, and yP is a random solution to the Particular equation.
But what to guess for f ? Well, there are some basic ideas.
Make sure you explain what guess you substituted

▶ If f is a polynomial of degree n, substitute y to be a generic
polynomial of degree n.

▶ If f is sin or cos, try something like A cos(x) + B sin(x)
▶ If f is some eγx , guess y = Ceγx .

Warning: if γ is already a root then this won’t work (you’ll get
zero). Try y = Cxeγx if it’s a single root and y = Cx2eγx if
it’s a double root.

Note that if f consists of the sum of more than one of these,
then again by principle of superposition, you can split this up
into more particular solutions, say yP1 + yP2 .

28



ODEs
Extras

▶ Springs
▶ Recall from physics: spring force Fs = −kx and air resistance

R = −βv , as well as gravity W = mg and overall F = ma
where x , v , a are displacement, velocity, acceleration

▶ Draw a diagram to get the ODE: it will be second order linear
homogenous if the reference point is the equilibrium point,
because then the equation becomes
ma = mg − k(s + y)− βy ′ =⇒ my ′′ + βy ′ + ky = 0 (s is
extension at equilibrium, y the distance below equilibrium
point).

▶ Make sure you make good reference to first principles,
i.e. Newton’s law
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ODEs
More on springs

Damping and long term behaviour
The key here is to look at the characteristic equation! Recalling
our second-order linear homogenous stuff, if the characteristic
equation has:

▶ Two real roots: solution is Aeat + Bebt , called “overdamped”
(spring stabilises to a point “too quickly”

▶ One real root: solution is Aeλt + Bteλt , “critically damped”
(stops perfectly)

▶ Two complex roots: solution is
y = Aeat cos(bt) + Beat sin(bt), “underdamped” (oscillates as
it comes to a stop)

▶ Special case: if a = 0 (i.e. β = 0, no damping):
y = A cos(bt) + B sin(bt) (simple harmonic motion)

Fun fact: can add a driving force (equivalent to f ̸= 0, e.g.
f = cos(Ωt)). Resonant frequency Ω breaks the spring.
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ODEs
Questions 7, 8

▶ Question 7: Substitute u = ey into

dy
dx

=
arctanh(x)

x2ey
− 2

x

and hence solve the ODE.
▶ Question 8: A beehive of 100,000 bees has a virus outbreak

(no recovery, and no bees die). If I (t) is the number (in
thousands) of bees infected at time t days, and the rate of
increase of I with respect to t is proportional to the product of
the numbers of infected and uninfected bees at time t, then:
▶ Show that

dI
dt

= βI (100− I )

for some β.
▶ Solve the ODE, first generally, and then subject to 100 initial

infections and 1000 total after 3 days.
▶ Comment on I (t) as t → ∞. 31



ODEs
Questions 7, 8 review

▶ Question 7: substitution gives

du
dx

=
arctanh(x)

x2
− 2u

x

and this is clearly integrating factor. Rearrange correctly!
When solving for u, will need to find

∫
arctanh(x) dx . Using

integration by parts stuff from before, set dv
dx = 1. Don’t

forget to get back to y after finding u.

▶ Question 8: separable; I integral involves (simple) partial
fractions. Handle constant cases separately when solving.
Should get

I (t) =
100

1 + Ae−100βt

which then gets A = 999, β = 1
300 log

(
111
11

)
. As t → ∞, the

Aestuff term disappears, so I (t) → 100 which means every bee
is infected.
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ODEs
Questions 10, 11

▶ Question 10: Solve

d2y

dx2
− 4

dy
dx

+ 4y = 2x + 18e5x

if y(0) = 1
2 , y

′(0) = 6.
▶ Question 11: 4kg mass suspended from spring with spring

constant k N m−1; air resistance with damping constant
β = 12 N s m−1 and gravity with g = 9.8 m s−2 (no other
forces).
▶ Derive the equation of motion.
▶ Which of k ∈ {4, 8, 16} would result in oscillations?
▶ If k = 4, give an example of an extra external force f (t) which

would result in long-term constant amplitude oscillations (or
explain why one doesn’t exist)
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ODEs
Question 10 review

▶ Question 10:
▶ First solve homogenous: λ2 − 4λ+ 4 has double root λ = 2 so

homogenous solution yHAe
2x + Bxe2x .

▶ First particular: f = 2x . Let yP1 = Cx + D and solve;
C = D = 1

2 .
▶ Second particular: f = 18e5x . Let yP2 = Fe5x and solve;

F = 2.
▶ Put it all together: y = Ae2x + Bxe2x + x

2 + 1
2 + 2e5x .

▶ Use conditions y(0) = 1
2 , y

′(0) = 6 to solve for A, B.
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ODEs
Question 11

▶ Question 11:
▶ Substitute in the numbers: 4 d2y

dt2 + 12 dy
dt + ky = 0.

▶ Want underdamped, so discriminant of characteristic
144− 16k < 0 =⇒ k > 9; thus k = 16 only

▶ For k = 4, overdamped (long-term stabilises position); add
driving force such as cos(t) which induces a long-term
constant sinusoidal oscillation (as by principle of superposition,
the added yP = A cos(t) + B sin(t) for some A, B)
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Skipped questions

▶ Question 9: Sketch the solutions to dy
dx = sin(y), x ≥ 0,

0 ≤ y ≤ 4π without solving it. (Sketch the slope field and
then trace the solutions, including equilibrium solutions y = 0,
y = π y = 2π, y = 3π, y = 4π)

▶ Question 12: Consider f (x , y) = 6−
√
x2 + y2 and the

surface S given by z = f (x , y).
▶ Find the level curve z = 2 and sketch it (solve and sketch

f (x , y) = 2)
▶ Find the level curve which passes through (x , y) = (3, 4).

(solve f (x , y) = f (3, 4))
▶ Sketch the cross-section of S in the xz-plane (set y = 0)
▶ Sketch S (it’s a cone)

▶ Any questions?
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