Revision Workshop Linear Algebra

Dougal Stewart
Education Officer
Ian Dong
Committee Member
Enda Han
Committee Member
Melbourne University Maths and Stats Society
MUMS Revision Workshop, Semester 22023

1. Matrices

- Systems of linear equations
- Gaussian elimination
- Inverting a matrix
- Determinants
- Row reduction
- Cofactor expansion
- Algebra of determinants
- Adjacency Matrices

2. Vector Spaces

- Vector Spaces
- Linear transformations
- Algebra of vectors
- Linear combinations, spanning sets, linear dependence
- Linear Dependence
- Spanning sets
- Subspaces, Bases, and Dimensions
- Column and row spaces
- Nullspace and the kernel
- Image

2. Vector Spaces

- Matrix Representations
- Change of basis on vectors
- Change of basis for transformations
- Eigenvalues and Eigenvectors
- Characteristic Polynomial
- Diagonalization

3. Inner Products

- The Inner Product Axioms
- Gram Schmidt Orthonormalisation
- Characteristic Polynomial
- Diagonalization

4. Solid Geometry

- Cross product
- Lines, Planes, etc...
- Cartesian Equations
- Converting from vector equations
- Intersections
- Shortest Distance

Matrices

Systems of Linear Equations

A system of linear equations

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2}
\end{aligned}
$$

$$
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m}
$$

Can be written in matrix form

$$
A \mathbf{x}=\mathbf{b}
$$

where

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right] \quad \mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right]
$$

Stick A and \mathbf{b} together, and you get the augmented matrix of the system

$$
[A \mid \mathbf{b}]=\left[\begin{array}{cccc|c}
a_{11} & a_{12} & \cdots & a_{1 n} & b_{1} \\
a_{21} & a_{22} & \cdots & a_{2 n} & b_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n} & b_{m}
\end{array}\right]
$$

To find solutions to the given system, we can apply the following operations on the augmented matrix

operation	notation	constraints
scale a row	$R_{i} \leftarrow \lambda R_{i}$	$\lambda \neq 0$
add a multiple of a row to another	$R_{i} \leftarrow R_{i}+\lambda R_{j}$	$i \neq j$
swap two rows	$R_{i} \leftrightarrow R_{j}$	$i \neq j$

Gaussian Elimination find the REF of any $n \times m$ matrix A,

1. if the top left entry is 0 , swap the first row with another row with a non-zero first entry. If no such row exists, repeat on the $n \times(m-1)$ submatrix formed by removing the first column.
2. normalize the top left entry to $1 R_{1} \leftarrow \frac{1}{a_{11}} R_{1}$
3. Subtract the first row from every row i to obtain a 0 in its leading entry $\left(R_{i} \leftarrow R_{i}-a_{i 1} R_{1}\right.$ for each $\left.i=2 \ldots n\right)$
4. repeat on the $(n-1) \times(m-1)$ submatrix formed by removing the first row and column.

Gaussian-Jordan Elimination extends Gaussian Elimination to give us the RREF of A

1. Let i be the index of the last leading 1 . Subtract the row i from every row $j<i$ to obtain a 0 on the column with the leading 1. $\left(R_{i} \leftarrow R_{j}-a_{j 1} R_{i}\right.$ for each $\left.j=1 \ldots i-1\right)$
2. ignore all the columns after and including the column with the last leading 1.
3. repeat step 1 .

Determinants

The determinant of a matrix A (denoted $|A|$ or $\operatorname{det}(A)$) has a very special property

- $\operatorname{det}(A) \neq 0$ if and only if A is invertible

Properties of determinants

1. $|I|=1$
2. $|A|=\prod_{i=1}^{n} a_{i i}$ if A is triangular
3. $|A|=|B| \times|D|$ where $A=\left[\begin{array}{c|c}B & * \\ \hline 0 & D\end{array}\right]$, B and D are square.

Algebraic properties of determinants

1. $|A|=\left|A^{T}\right|$
2. $|A B|=|A| \times|B|$
3. $\left|A^{-1}\right|=|A|^{-1}$
4. $|k A|=k^{n}|A|$

Row Reduction

$$
\begin{array}{ll}
\text { Row operation } & \text { Effect } \\
\hline R_{i} \leftrightarrow R_{j} & \operatorname{det}(A)=-\operatorname{det}\left(A^{\prime}\right) \\
R_{i} \leftarrow R_{i}+\lambda R_{j} & \operatorname{det}(A)=\operatorname{det}\left(A^{\prime}\right) \\
R_{i} \leftarrow \frac{1}{\lambda} R_{i} & \operatorname{det}(A)=\lambda \operatorname{det}\left(A^{\prime}\right)
\end{array}
$$

Note that the above operations work for columns in the same way that they work for rows.

Cofactor expansion

1. Select a row
2. For every term in this row: Calculate the determinant of the $(n-1) \times(n-1)$ matrix formed by removing the row and column containing our given term. Multiply this smaller determinant by the term itself. Multiply by -1 if in an even column.
3. Sum

Note that selecting a column also works.

Adjacency Matrices

On Construction (of the matrix):

- If there is an edge connecting vertex i to vertex j entry $A_{i j}=1$ (or however many edges there are connecting the two vertices if you have a fancy graph).
BIG IMPORTANT THEOREM:
- Let A be the adjacency matrix of a given graph. Then the entries i, j of A^{n} counts n-steps walks from vertex i to j.
NB: It isn't too hard to prove this if you aren't satisfied with just blindly applying a theorem - consider inducting on n.

Transpose and Inverse of Products

1. $(A B)^{-1}=B^{-1} A^{-1}$
2. $(A B)^{T}=B^{T} A^{T}$

A vector space $(V,+)$ over field K (typically \mathbb{R} or $\mathbb{C})$ is a set with operation $+: V \times V \rightarrow V$ such that:

1. $u+v \in V$
2. $u+v=v+u$
3. $(u+v)+w=u+(v+w)$
4. $\exists \mathbf{0} \in V$ such that $u+\mathbf{0}=\mathbf{0}+u=u$
5. $\forall u \in V \exists-u$ such that $u+(-u)=\mathbf{0}$
6. $k u \in V$
7. $(k+l) u=k u+l u$
8. $k(l u)=(k /) u$
9. $1 \times u=u$
for $u, v, w \in V$ and $k, l \in K$

Subspace Theorem/Lemma

W is a subspace of V if the following hold:

1. Set is non-empty
2. $u+v \in W$ for all $v, w \in W$
3. $k u \in W$ for all $u \in W, k \in \mathbb{R}$ (usually)

- We say a set of vectors $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is linear independent iff:

$$
a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{n} v_{n}=0 \Longrightarrow a_{1}=a_{2}=\cdots=a_{n}=0
$$

and dependent if not.

- Any set of linearly independent vectors must have cardinality (size) at most the dimension of our vector space.
- A set of vectors $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis for V iff:

1. The set is linearly independent
2. The set spans V (Every vector $v \in V$ can be expressed as $a_{1} v_{1}+\cdots+a_{n} v_{n}=v$ for some $\left.a_{1}, \ldots, a_{n} \in \mathbb{R}\right)$
3. We say that the number of vectors in any basis of a vector space is the dimension of the vector space.

- Any set of n linearly independent vectors is a basis for V.
- Any set of n vectors which spans V is a basis for V.
- Any set of r linearly independent vectors can be extended by adding vectors to form a basis.
- Basis for Row space is found by row reducing
- Basis for Column space is found by taking leading 1's in RRE form, identifying respective columns, then taking respective vectors in original columns.
- Solution space is the set of all solutions to $A x=0$ (also known as the kernel or null-space). This is found by row reducing and represented by taking a basis of the solution space.

Note that matrices and transformations are equivalent. Injectivity/Surjectivity of transformations can be deduced from leading 1s in the RREF:

- Every column has a leading $1 \Longrightarrow$ injective
- Every row has a leading $1 \Longrightarrow$ surjective

Change of Basis

- $P_{S \rightarrow B}$ (sending vector from standard to basis B)
- $P_{B \rightarrow S}=\left(P_{S \rightarrow B}\right)^{-1}$ (B to standard) $)$
- $P_{B \rightarrow B^{\prime}}=P_{B \rightarrow S} P_{S \rightarrow B^{\prime}}$
- $P_{B \rightarrow B^{\prime}}[T]_{B} P_{B^{\prime} \rightarrow B}=[T]_{B}^{\prime}$ for any linear transformation T $\left([T]_{A}\right.$ means T represented in basis A)
- Principally we are finding solutions to the following equation:

$$
A x=\lambda x
$$

for $\lambda \in \mathbb{R}$

- It turns out that this is equivalent to solving

$$
\operatorname{det}(A-\lambda I)=0
$$

where I is the $n \times n$ identity matrix.

Characteristic Polynomials is exactly $\operatorname{det}(A-\lambda /)$.

1. By using co-factor expansion the enumeration of the determinant yields a polynomial in λ which we call the characteristic polynomial.
2. Solving for when this is $=0$ gives us the eigenvalues (λ) for our matrix A.
3. We then substitute these values back in and solve for the solution space of $(A-\lambda I) v=0$ to find our eigenvectors.

Diagonalisation:

We call a square matrix diagonalisable if there exists P such that
$A=P D P^{-1}$ where D is a diagonalisable matrix.

- It turns out that a square matrix is diagonalisable iff there are n linearly independent eigenvectors.
- If we have such a set, we have that the columns of P are these vectors and D has diagonal entries that correspond to respective eigenvalues (you can verify yourself that this diagonalisation works).
- A corollary of this is that if we have n distinct eigenvalues then the matrix is diagonalisable - the converse isn't necessarily true though.

An inner product over vector space $(V,+)$ is a function $\langle\rangle:, V \times V \rightarrow K$ such that:

1. $\langle u, v\rangle=\overline{\langle v, u\rangle}$ (Don't worry about the conjugate line too much, the inner products we deal with are over the reals so it just ends up being $\langle u, v\rangle=\langle v, u\rangle$)
2. $\langle k u+I v, w\rangle=k\langle u, w\rangle+I\langle v, w\rangle$
3. $\langle v, v\rangle \geq 0$ where equality holds iff $v=\mathbf{0}$
where $v, w \in V$ and $k, l \in K$. A vector space with such an operation is called an inner product space.
WARNING: In the exam make sure to check every inner product you write \langle,$\rangle and not the dot product (unless specifically given)$

This process allows us to construct orthonormal basis given a set of n linearly independent vectors:

$$
\begin{gathered}
u_{1}=\frac{v_{1}}{\left\|v_{1}\right\|} \\
u_{2}=\frac{v_{2}-<v_{2}, u_{1}>u_{1}}{\left\|v_{2}-<v_{2}, u_{1}>u_{1}\right\|} \\
u_{3}=\frac{v_{3}-<v_{3}, u_{1}>u_{1}-<v_{3}, u_{2}>u_{2}}{\left\|v_{3}-<v_{3}, u_{1}>u_{1}-<v_{3}, u_{2}>u_{2}\right\|}
\end{gathered}
$$

and so forth...
The best way of understand how this works is just to try it yourself! Maybe try finding an orthonormal basis using the set $\{(1,2,3),(0,1,5),(1,0,4)\}$ which spans \mathbb{R}^{3}.

Inner Product Spaces

An $n \times n$ matrix A is orthogonal, if and only if

- $A A^{T}=I$
- or equivalently, the columns of A are all orthogonal

Inner Product Spaces

If an $n \times n$ matrix A is symmetric, then

- A has all real eigenvalues
- A has all orthonormal eigenvectors
- Cross Product
- Line and Planes
- Cartesian and Vector Equations
- Distances

$$
v=(a \cdot \hat{b}) \hat{b}
$$

1. Point to Line
2. Point to Plane
3. Line to Plane
4. Plane to Plane
5. Line to Line

- Line of intersection between two planes.

