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Overview
Matrices

1. Matrices
▶ Systems of linear equations

▶ Gaussian elimination
▶ Inverting a matrix

▶ Determinants
▶ Row reduction
▶ Cofactor expansion
▶ Algebra of determinants

▶ Adjacency Matrices
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Overview
Vector Spaces

2. Vector Spaces
▶ Vector Spaces

▶ Linear transformations
▶ Algebra of vectors

▶ Linear combinations, spanning sets, linear dependence
▶ Linear Dependence
▶ Spanning sets

▶ Subspaces, Bases, and Dimensions
▶ Column and row spaces
▶ Nullspace and the kernel
▶ Image
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Overview
Vector Spaces (Continued)

2. Vector Spaces
▶ Matrix Representations

▶ Change of basis on vectors
▶ Change of basis for transformations

▶ Eigenvalues and Eigenvectors
▶ Characteristic Polynomial
▶ Diagonalization
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Overview
Inner Products

3. Inner Products
▶ The Inner Product Axioms
▶ Gram Schmidt Orthonormalisation

▶ Characteristic Polynomial
▶ Diagonalization
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Overview
Solid Geometry

4. Solid Geometry
▶ Cross product
▶ Lines, Planes, etc...
▶ Cartesian Equations

▶ Converting from vector equations
▶ Intersections
▶ Shortest Distance
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Matrices
Systems of Linear Equations

A system of linear equations

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

am1x1 + am2x2 + · · ·+ amnxn = bm

Can be written in matrix form
Ax = b

where

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 x =


x1
x2
...
xn

 b =


b1
b2
...
bn


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Matrices
Systems of Linear Equations (Continued)

Stick A and b together, and you get the augmented matrix of the
system

[A|b] =


a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
...

...
. . .

...
...

am1 am2 · · · amn bm



8



Matrices
Systems of Linear Equations

To find solutions to the given system, we can apply the following
operations on the augmented matrix

operation notation constraints

scale a row Ri ← λRi λ ̸= 0
add a multiple of a row to another Ri ← Ri + λRj i ̸= j
swap two rows Ri ↔ Rj i ̸= j
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Matrices
Systems of Linear Equations

Gaussian Elimination find the REF of any n ×m matrix A,

1. if the top left entry is 0, swap the first row with another row
with a non-zero first entry. If no such row exists, repeat on the
n × (m − 1) submatrix formed by removing the first column.

2. normalize the top left entry to 1 R1 ← 1
a11

R1

3. Subtract the first row from every row i to obtain a 0 in its
leading entry (Ri ← Ri − ai1R1 for each i = 2...n)

4. repeat on the (n − 1)× (m − 1) submatrix formed by
removing the first row and column.
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Matrices
Systems of Linear Equations

Gaussian-Jordan Elimination extends Gaussian Elimination to
give us the RREF of A

1. Let i be the index of the last leading 1. Subtract the row i
from every row j < i to obtain a 0 on the column with the
leading 1. (Ri ← Rj − aj1Ri for each j = 1...i − 1)

2. ignore all the columns after and including the column with the
last leading 1.

3. repeat step 1.
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Matrices
Determinants

Determinants
The determinant of a matrix A (denoted |A| or det(A)) has a very
special property

▶ det(A) ̸= 0 if and only if A is invertible
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Matrices
Determinants

Properties of determinants

1. |I | = 1

2. |A| =
∏n

i=1 aii if A is triangular

3. |A| = |B| × |D| where A =

[
B ∗
0 D

]
, B and D are square.

Algebraic properties of determinants

1. |A| =
∣∣AT

∣∣
2. |AB| = |A| × |B|
3.

∣∣A−1
∣∣ = |A|−1

4. |kA| = kn|A|
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Matrices
Determinants

Row Reduction

Row operation Effect

Ri ↔ Rj det(A) = − det(A′)
Ri ← Ri + λRj det(A) = det(A′)
Ri ← 1

λRi det(A) = λ det(A′)

Note that the above operations work for columns in the same way
that they work for rows.
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Matrices
Determinants

Cofactor expansion

1. Select a row

2. For every term in this row: Calculate the determinant of the
(n − 1)× (n − 1) matrix formed by removing the row and
column containing our given term. Multiply this smaller
determinant by the term itself. Multiply by −1 if in an even
column.

3. Sum

Note that selecting a column also works.
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Matrices
Adjacency Matrices

Adjacency Matrices
On Construction (of the matrix):

▶ If there is an edge connecting vertex i to vertex j entry
Aij = 1 (or however many edges there are connecting the two
vertices if you have a fancy graph).

BIG IMPORTANT THEOREM:

▶ Let A be the adjacency matrix of a given graph. Then the
entries i , j of An counts n-steps walks from vertex i to j .

NB: It isn’t too hard to prove this if you aren’t satisfied with just
blindly applying a theorem - consider inducting on n.
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Matrices
Miscellaneous

Transpose and Inverse of Products

1. (AB)−1 = B−1A−1

2. (AB)T = BTAT
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Vector Spaces
Definition

A vector space (V ,+) over field K (typically R or C) is a set with
operation + : V × V → V such that:

1. u + v ∈ V

2. u + v = v + u

3. (u + v) + w = u + (v + w)

4. ∃ 0 ∈ V such that u + 0 = 0+ u = u

5. ∀ u ∈ V ∃ − u such that u + (−u) = 0

6. ku ∈ V

7. (k + l)u = ku + lu

8. k(lu) = (kl)u

9. 1× u = u

for u, v ,w ∈ V and k, l ∈ K
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Vector Spaces
Subspaces

Subspace Theorem/Lemma
W is a subspace of V if the following hold:

1. Set is non-empty

2. u + v ∈W for all v ,w ∈W

3. ku ∈W for all u ∈W , k ∈ R (usually)
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Vector Spaces
Linear Independence and Dependence

▶ We say a set of vectors {v1, v2, . . . , vn} is linear independent
iff:

a1v1 + a2v2 + · · ·+ anvn = 0 =⇒ a1 = a2 = · · · = an = 0

and dependent if not.

▶ Any set of linearly independent vectors must have cardinality
(size) at most the dimension of our vector space.
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Vector Spaces
Basis and Dimension

▶ A set of vectors {v1, v2, . . . , vn} is a basis for V iff:

1. The set is linearly independent
2. The set spans V (Every vector v ∈ V can be expressed as

a1v1 + · · ·+ anvn = v for some a1, . . . , an ∈ R)
3. We say that the number of vectors in any basis of a vector

space is the dimension of the vector space.

▶ Any set of n linearly independent vectors is a basis for V .

▶ Any set of n vectors which spans V is a basis for V .

▶ Any set of r linearly independent vectors can be extended by
adding vectors to form a basis.
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Vector Spaces
Column, Row, Solution Spaces

▶ Basis for Row space is found by row reducing

▶ Basis for Column space is found by taking leading 1’s in
RRE form, identifying respective columns, then taking
respective vectors in original columns.

▶ Solution space is the set of all solutions to Ax = 0 (also
known as the kernel or null-space). This is found by row
reducing and represented by taking a basis of the solution
space.
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Vector Spaces
Matrix Representations

Note that matrices and transformations are equivalent.
Injectivity/Surjectivity of transformations can be deduced from
leading 1s in the RREF:

▶ Every column has a leading 1 =⇒ injective

▶ Every row has a leading 1 =⇒ surjective

23



Vector Spaces
Matrix Representations

Change of Basis

▶ PS→B (sending vector from standard to basis B)

▶ PB→S = (PS→B)
−1 (B to standard)

▶ PB→B′ = PB→SPS→B′

▶ PB→B′ [T ]BPB′→B = [T ]′B for any linear transformation T
([T ]A means T represented in basis A)
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Vector Spaces
Eigenvalues and Eigenvectors

▶ Principally we are finding solutions to the following equation:

Ax = λx

for λ ∈ R
▶ It turns out that this is equivalent to solving

det(A− λI ) = 0

where I is the n × n identity matrix.
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Vector Spaces
Eigenvalues and Eigenvectors

Characteristic Polynomials is exactly det(A− λI ).

1. By using co-factor expansion the enumeration of the
determinant yields a polynomial in λ which we call the
characteristic polynomial.

2. Solving for when this is = 0 gives us the eigenvalues (λ) for
our matrix A.

3. We then substitute these values back in and solve for the
solution space of (A− λI )v = 0 to find our eigenvectors.
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Vector Spaces
Eigenvalues and Eigenvectors

Diagonalisation:
We call a square matrix diagonalisable if there exists P such that
A = PDP−1 where D is a diagonalisable matrix.

▶ It turns out that a square matrix is diagonalisable iff there are
n linearly independent eigenvectors.

▶ If we have such a set, we have that the columns of P are
these vectors and D has diagonal entries that correspond to
respective eigenvalues (you can verify yourself that this
diagonalisation works).

▶ A corollary of this is that if we have n distinct eigenvalues
then the matrix is diagonalisable - the converse isn’t
necessarily true though.
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Inner Product Spaces
Axioms

An inner product over vector space (V ,+) is a function
⟨ , ⟩ : V × V → K such that:

1. ⟨u, v⟩ = ⟨v , u⟩ (Don’t worry about the conjugate line too
much, the inner products we deal with are over the reals so it
just ends up being ⟨u, v⟩ = ⟨v , u⟩)

2. ⟨ku + lv ,w⟩ = k⟨u,w⟩+ l⟨v ,w⟩
3. ⟨v , v⟩ ≥ 0 where equality holds iff v = 0

where v ,w ∈ V and k , l ∈ K . A vector space with such an
operation is called an inner product space.
WARNING: In the exam make sure to check every inner product
you write ⟨ , ⟩ and not the dot product (unless specifically given)
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Inner Product Spaces
Gram-Schmidt

This process allows us to construct orthonormal basis given a set of
n linearly independent vectors:

u1 =
v1
||v1||

u2 =
v2− < v2, u1 > u1
||v2− < v2, u1 > u1||

u3 =
v3− < v3, u1 > u1− < v3, u2 > u2
||v3− < v3, u1 > u1− < v3, u2 > u2||

and so forth...
The best way of understand how this works is just to try it
yourself! Maybe try finding an orthonormal basis using the set
{(1, 2, 3), (0, 1, 5), (1, 0, 4)} which spans R3.
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Inner Product Spaces

An n × n matrix A is orthogonal, if and only if

▶ AAT = I

▶ or equivalently, the columns of A are all orthogonal
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Inner Product Spaces

If an n × n matrix A is symmetric, then

▶ A has all real eigenvalues

▶ A has all orthonormal eigenvectors
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Solid Geometry
Summary

▶ Cross Product

▶ Line and Planes

▶ Cartesian and Vector Equations

▶ Distances
v = (a · b̂)b̂

1. Point to Line
2. Point to Plane
3. Line to Plane
4. Plane to Plane
5. Line to Line

▶ Line of intersection between two planes.
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