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1. Matrices

> Systems of linear equations
» Gaussian elimination
» Inverting a matrix

» Determinants
» Row reduction
» Cofactor expansion
> Algebra of determinants

» Adjacency Matrices
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Overview & P~
Vector Spaces v

2. Vector Spaces

» Vector Spaces
» Linear transformations
> Algebra of vectors

P Linear combinations, spanning sets, linear dependence
» Linear Dependence
» Spanning sets

» Subspaces, Bases, and Dimensions
» Column and row spaces
» Nullspace and the kernel
> Image
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Overview & o~
Vector Spaces (Continued) v J

2. Vector Spaces
» Matrix Representations
» Change of basis on vectors
» Change of basis for transformations
» Eigenvalues and Eigenvectors
» Characteristic Polynomial
» Diagonalization
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Overview & o~
Inner Products v J

3. Inner Products
» The Inner Product Axioms
» Gram Schmidt Orthonormalisation

» Characteristic Polynomial
» Diagonalization
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Overview & o~
Solid Geometry v J

4. Solid Geometry

» Cross product

» Lines, Planes, etc...

» Cartesian Equations
» Converting from vector equations
» Intersections
» Shortest Distance
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A system of linear equations
a11x1 + axe + -+ + aipxn = by

ax1x1 + axx + -+ + anxp = b2

AmiX1 + amaX2 + -+ + amnXn = bm

Can be written in matrix form

Ax=Db
where
ail a2 ccc A X1 b
ax ax - am X2 by
A= i X = b=
aml a4m2 - amn Xn bn
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Matrices & '
Systems of Linear Equations (Continued) v

Stick A and b together, and you get the augmented matrix of the
system
ai a2 - an | b

a1 axp - ax | b
[Alb] =

dml dm2 °°° dmn bm
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To find solutions to the given system, we can apply the following

operations on the augmented matrix

operation notation constraints
scale a row R; + AR A#£0
add a multiple of a row to another R; <+ R +AR; i#j
swap two rows Ri < R, i #J
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Gaussian Elimination find the REF of any n x m matrix A,

1.

if the top left entry is O, swap the first row with another row
with a non-zero first entry. If no such row exists, repeat on the
n x (m — 1) submatrix formed by removing the first column.

2. normalize the top left entry to 1 Ry + %HRl

3. Subtract the first row from every row i to obtain a 0 in its

leading entry (R; < R; — aj1 Ry for each i = 2...n)

repeat on the (n — 1) x (m — 1) submatrix formed by
removing the first row and column.
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Systems of Linear Equations v J

Gaussian-Jordan Elimination extends Gaussian Elimination to
give us the RREF of A

1. Let / be the index of the last leading 1. Subtract the row i
from every row j < i to obtain a 0 on the column with the
leading 1. (R; <~ R; — aj1R; for each j =1...i — 1)

2. ignore all the columns after and including the column with the
last leading 1.

3. repeat step 1.

11
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Determinants
The determinant of a matrix A (denoted |A| or det(A)) has a very
special property

» det(A) # 0 if and only if A is invertible

12
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Matrices & '
Determinants v J

Properties of determinants

1. |l|=1

2. |Al =TI, aii if Ais triangular

3. |A| = |B| x |D| where A = { g ; } B and D are square.
Algebraic properties of determinants

1Al = |AT|

2. |AB| = |A| x |B|

3. ]A7 Y =147

4. |kA| = k"|A|

13
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Row Reduction

Row operation  Effect

R & R; det(A) = — det(A)
Ri <~ Ri + AR; det(A) = det(A’)
R« 1R, det(A) = A det(A)

Note that the above operations work for columns in the same way
that they work for rows.

14
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Cofactor expansion
1. Select a row

2. For every term in this row: Calculate the determinant of the
(n—1) x (n— 1) matrix formed by removing the row and
column containing our given term. Multiply this smaller
determinant by the term itself. Multiply by —1 if in an even
column.

3. Sum

Note that selecting a column also works.

15
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Adjacency Matrices v J

ty

Adjacency Matrices
On Construction (of the matrix):

» If there is an edge connecting vertex i to vertex j entry

Ajj =1 (or however many edges there are connecting the two
vertices if you have a fancy graph).

BIG IMPORTANT THEOREM:
> Let A be the adjacency matrix of a given graph. Then the
entries /, j of A” counts n-steps walks from vertex i to j.
NB: To prove this, consider inducting on n.

16



Melbourne
University
Maths +
Stats Society

Matrices f"‘ —
Miscellaneous v J

Transpose and Inverse of Products
1. (AB)"1=B"1A!
2. (AB)T =BTAT

17
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A vector space (V,+) over field K (typically R or C) is a set with
operation + : V x V — V such that:

l.u+veV
ut+v=v+4u
(u+v)+w=uv+(v+w)
.30€ Vsuchthat u+0=0+u=u
. Yue V3 —usuchthat u+(—u)=0
. kueV

(k+Nu=ku+lu
. k(lu) = (kl)u

9. 1xu=u
foru,v,w € V and k,l € K

18



Melbourne
University
Maths +
Stats Society

ey Spaces @)

Subspace Theorem/Lemma
W is a subspace of V if the following hold:

1. Set is non-empty
2. u+veWforallv,we W
3. kue W forall ue W, k € R (usually)

19
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Vector Spaces & &
Linear Independence and Dependence v J

» We say a set of vectors {vi, vo, ..., v,} is linear independent
iff:
aavit+avw+---4+avy,=0 = a1=a=---=a,=0

and dependent if not.

» Any set of linearly independent vectors must have cardinality
(size) at most the dimension of our vector space.

20
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Vector Spaces $& '
Basis and Dimension v J

» A set of vectors {vi, v2,..., Vv,} is a basis for V iff:

1. The set is linearly independent

2. The set spans V (Every vector v € V can be expressed as
avs + -+ apv, = v for some ay,...,a, € R)

3. We say that the number of vectors in any basis of a vector
space is the dimension of the vector space.

» Any set of n linearly independent vectors is a basis for V.
» Any set of n vectors which spans V is a basis for V.

» Any set of r linearly independent vectors can be extended by
adding vectors to form a basis.

21
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Vector Spaces §h o~
Column, Row, Solution Spaces v J

> Basis for Row space is found by row reducing

» Basis for Column space is found by taking leading 1's in
RRE form, identifying respective columns, then taking
respective vectors in original columns.

» Solution space is the set of all solutions to Ax = 0 (also
known as the kernel or null-space). This is found by row
reducing and represented by taking a basis of the solution
space.
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Vector Spaces & &
Matrix Representations v J

Note that matrices and transformations are equivalent.
Injectivity/Surjectivity of transformations can be deduced from
leading 1s in the RREF:

> Every column has a leading 1 = injective

» Every row has a leading 1 = surjective

23
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Vector Spaces & &
Matrix Representations v J

Change of Basis
» Ps_.p (sending vector from standard to basis B)
» Pg_,s=(Ps.g)"! (B to standard)
> Pgp = PpsPsp

» Pg_p/[T]gPs—pg = [Ty for any linear transformation T
([T]a means T represented in basis A)

24
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Vector Spaces & &
Eigenvalues and Eigenvectors v J

» Principally we are finding solutions to the following equation:

Ax = Ax
for A e R

P It turns out that this is equivalent to solving
det(A— ) =0

where [ is the n x n identity matrix.

25
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Vector Spaces $& '
Eigenvalues and Eigenvectors v J

Characteristic Polynomials is exactly det(A — A/).

1. By using co-factor expansion the enumeration of the
determinant yields a polynomial in A which we call the
characteristic polynomial.

2. Solving for when this is = 0 gives us the eigenvalues () for
our matrix A.

3. We then substitute these values back in and solve for the
solution space of (A — Al)v = 0 to find our eigenvectors.
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Eigenvalues and Eigenvectors v J

Diagonalisation:
We call a square matrix diagonalisable if there exists P such that
A = PDP~! where D is a diagonalisable matrix.

» It turns out that a square matrix is diagonalisable iff there are
n linearly independent eigenvectors.

» If we have such a set, we have that the columns of P are
these vectors and D has diagonal entries that correspond to
respective eigenvalues (you can verify yourself that this
diagonalisation works).

> A corollary of this is that if we have n distinct eigenvalues
then the matrix is diagonalisable - the converse isn't
necessarily true though.

27
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Axioms

An inner product over vector space (V,+) is a function
(,):V xV = K such that:
1. (u,v) = (v, u) (Don't worry about the conjugate line too
much, the inner products we deal with are over the reals so it
just ends up being (u,v) = (v, u))
2. (ku+ Iv,w) = k{u,w) + I{v,w)
3. (v, v) > 0 where equality holds iff v =0
where v,w € V and k,/ € K. A vector space with such an
operation is called an inner product space.
WARNING: In the exam make sure to check every inner product
you write (, ) and not the dot product (unless specifically given)

28
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Inner Product Spaces & '
Gram-Schmidt v J

This process allows us to construct orthonormal basis given a set of
n linearly independent vectors:
Vi
Al
w— < w,u > U
[[va— < vo,u1 > w]]

U

up =

vi— < v3,U1 > u1— < v3,Up > U

uz =
HV3* <wv3,up > u— < v3,Uup > U2||

and so forth...

The best way of understand how this works is just to try it
yourself!  Maybe try finding an orthonormal basis using the set
{(1,2,3),(0,1,5),(1,0,4)} which spans R3.

29
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An n x n matrix A is orthogonal, if and only if
> AAT =

> or equivalently, the columns of A are all orthogonal

30
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If an n x n matrix A is symmetric, then
P> A has all real eigenvalues

P A has all orthonormal eigenvectors
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Solid Geometry

Summary
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» Cross Product
» Line and Planes
» Cartesian and Vector Equations

» Distances
v=_(a-b)b

Point to Line
Point to Plane
Line to Plane
Plane to Plane
5. Line to Line

bl

» Line of intersection between two planes.
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