

Revision Workshop Linear Algebra

DOUGAL STEWART Education Officer

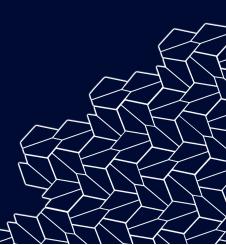
IAN DONG

Committee Member

Enda Han Committee Member

Melbourne University Maths and Stats Society

MUMS Revision Workshop, Semester 2 2024



1. Matrices

- Systems of linear equations
 - Gaussian elimination
 - ► Inverting a matrix
- Determinants
 - Row reduction
 - Cofactor expansion
 - Algebra of determinants
- Adjacency Matrices

2. Vector Spaces

- Vector Spaces
 - Linear transformations
 - Algebra of vectors
- Linear combinations, spanning sets, linear dependence
 - Linear Dependence
 - Spanning sets
- Subspaces, Bases, and Dimensions
 - Column and row spaces
 - Nullspace and the kernel
 - Image

2. Vector Spaces

- Matrix Representations
 - Change of basis on vectors
 - Change of basis for transformations
- Eigenvalues and Eigenvectors
 - Characteristic Polynomial
 - Diagonalization

3. Inner Products

- ► The Inner Product Axioms
- Gram Schmidt Orthonormalisation
 - ► Characteristic Polynomial
 - Diagonalization

4. Solid Geometry

- Cross product
- Lines, Planes, etc...
- Cartesian Equations
 - Converting from vector equations
 - Intersections
 - Shortest Distance

A system of linear equations

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

Can be written in matrix form

$$Ax = b$$

where

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

Stick A and \mathbf{b} together, and you get the augmented matrix of the system

$$[A|\mathbf{b}] = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{bmatrix}$$

8

To find solutions to the given system, we can apply the following operations on the augmented matrix

operation	notation	constraints
scale a row	$R_i \leftarrow \lambda R_i$	$\lambda \neq 0$
add a multiple of a row to another	$R_i \leftarrow R_i + \lambda R_j$	$i \neq j$
swap two rows	$R_i \leftrightarrow R_j$	$i \neq j$

Gaussian Elimination find the REF of any $n \times m$ matrix A,

- 1. if the top left entry is 0, swap the first row with another row with a non-zero first entry. If no such row exists, repeat on the $n \times (m-1)$ submatrix formed by removing the first column.
- 2. normalize the top left entry to 1 $R_1 \leftarrow \frac{1}{a_{11}} R_1$
- 3. Subtract the first row from every row i to obtain a 0 in its leading entry $(R_i \leftarrow R_i a_{i1}R_1 \text{ for each } i = 2...n)$
- 4. repeat on the $(n-1) \times (m-1)$ submatrix formed by removing the first row and column.

Gaussian-Jordan Elimination extends Gaussian Elimination to give us the RREF of \boldsymbol{A}

- 1. Let i be the index of the last leading 1. Subtract the row i from every row j < i to obtain a 0 on the column with the leading 1. $(R_i \leftarrow R_j a_{j1}R_i \text{ for each } j = 1...i 1)$
- 2. ignore all the columns after and including the column with the last leading 1.
- 3. repeat step 1.

Determinants

The determinant of a matrix A (denoted |A| or det(A)) has a very special property

 $ightharpoonup \det(A) \neq 0$ if and only if A is invertible

Properties of determinants

- 1. |I| = 1
- 2. $|A| = \prod_{i=1}^{n} a_{ii}$ if A is triangular
- 3. $|A| = |B| \times |D|$ where $A = \begin{bmatrix} B & * \\ \hline 0 & D \end{bmatrix}$, B and D are square.

Algebraic properties of determinants

- 1. $|A| = |A^T|$
- 2. $|AB| = |A| \times |B|$
- 3. $|A^{-1}| = |A|^{-1}$
- 4. $|kA| = k^n |A|$

Row Reduction

Row operation	Effect
$R_i \leftrightarrow R_j$	$\det(A) = -\det(A')$
$R_i \leftarrow R_i + \lambda R_j$	$\det(A) = \det(A')$
$R_i \leftarrow \frac{1}{\lambda} R_i$	$\det(A) = \lambda \det(A')$

Note that the above operations work for **columns** in the same way that they work for rows.

Cofactor expansion

- 1. Select a row
- 2. For every term in this row: Calculate the determinant of the $(n-1)\times(n-1)$ matrix formed by removing the row and column containing our given term. Multiply this smaller determinant by the term itself. Multiply by -1 if in an even column.
- 3. Sum

Note that selecting a column also works.

Adjacency Matrices

On Construction (of the matrix):

If there is an edge connecting vertex i to vertex j entry $A_{ij} = 1$ (or however many edges there are connecting the two vertices if you have a fancy graph).

BIG IMPORTANT THEOREM:

Let A be the adjacency matrix of a given graph. Then the entries i, j of A^n counts n-steps walks from vertex i to j.

NB: To prove this, consider inducting on n.

Transpose and Inverse of Products

1.
$$(AB)^{-1} = B^{-1}A^{-1}$$

2.
$$(AB)^T = B^T A^T$$

A vector space (V,+) over field K (typically $\mathbb R$ or $\mathbb C$) is a set with operation $+: V \times V \to V$ such that:

- 1. $u + v \in V$
- 2. u + v = v + u
- 3. (u+v)+w=u+(v+w)
- 4. \exists **0** ∈ *V* such that u + **0** = **0** + u = u
- 5. $\forall u \in V \exists -u \text{ such that } u + (-u) = \mathbf{0}$
- 6. *ku* ∈ *V*
- 7. (k+1)u = ku + lu
- 8. k(lu) = (kl)u
- 9. $1 \times u = u$

for $u, v, w \in V$ and $k, l \in K$

Subspace Theorem/Lemma

W is a subspace of V if the following hold:

- 1. Set is non-empty
- 2. $u + v \in W$ for all $v, w \in W$
- 3. $ku \in W$ for all $u \in W$, $k \in \mathbb{R}$ (usually)

We say a set of vectors $\{v_1, v_2, \dots, v_n\}$ is linear independent iff:

$$a_1v_1 + a_2v_2 + \cdots + a_nv_n = 0 \implies a_1 = a_2 = \cdots = a_n = 0$$

and dependent if not.

Any set of linearly independent vectors must have cardinality (size) at most the dimension of our vector space.

Basis and Dimension

- ▶ A set of vectors $\{v_1, v_2, ..., v_n\}$ is a basis for V iff:
 - 1. The set is linearly independent
 - 2. The set spans V (Every vector $v \in V$ can be expressed as $a_1v_1 + \cdots + a_nv_n = v$ for some $a_1, \ldots, a_n \in \mathbb{R}$)
 - 3. We say that the number of vectors in any basis of a vector space is the *dimension* of the vector space.
- \triangleright Any set of *n* linearly independent vectors is a basis for V.
- Any set of n vectors which spans V is a basis for V.
- ▶ Any set of *r* linearly independent vectors can be extended by adding vectors to form a basis.

- ▶ Basis for Row space is found by row reducing
- ▶ Basis for Column space is found by taking leading 1's in RRE form, identifying respective columns, then taking respective vectors in original columns.
- **Solution space** is the set of all solutions to Ax = 0 (also known as the kernel or null-space). This is found by row reducing and represented by taking a basis of the solution space.

Note that matrices and transformations are equivalent. Injectivity/Surjectivity of transformations can be deduced from leading 1s in the RREF:

- ightharpoonup Every column has a leading $1 \implies$ injective
- ightharpoonup Every row has a leading $1 \implies$ surjective

Change of Basis

- $ightharpoonup P_{S \to B}$ (sending vector from standard to basis B)
- $ightharpoonup P_{B o S} = (P_{S o B})^{-1}$ (B to standard)
- $P_{B \to B'} = P_{B \to S} P_{S \to B'}$
- ▶ $P_{B \to B'}[T]_B P_{B' \to B} = [T]'_B$ for any linear transformation T ($[T]_A$ means T represented in basis A)

Principally we are finding solutions to the following equation:

$$Ax = \lambda x$$

for $\lambda \in \mathbb{R}$

It turns out that this is equivalent to solving

$$\det(A - \lambda I) = 0$$

where I is the $n \times n$ identity matrix.

Characteristic Polynomials is exactly $det(A - \lambda I)$.

- 1. By using co-factor expansion the enumeration of the determinant yields a polynomial in λ which we call the characteristic polynomial.
- 2. Solving for when this is = 0 gives us the eigenvalues (λ) for our matrix A.
- 3. We then substitute these values back in and solve for the solution space of $(A \lambda I)v = 0$ to find our eigenvectors.

Diagonalisation:

We call a square matrix diagonalisable if there exists P such that $A = PDP^{-1}$ where D is a diagonalisable matrix.

- ▶ It turns out that a square matrix is diagonalisable iff there are *n* linearly independent eigenvectors.
- ▶ If we have such a set, we have that the columns of *P* are these vectors and *D* has diagonal entries that correspond to respective eigenvalues (you can verify yourself that this diagonalisation works).
- A corollary of this is that if we have *n* distinct eigenvalues then the matrix is diagonalisable the converse isn't necessarily true though.

An inner product over vector space (V, +) is a function $\langle , \rangle : V \times V \to K$ such that:

- 1. $\langle u, v \rangle = \overline{\langle v, u \rangle}$ (Don't worry about the conjugate line too much, the inner products we deal with are over the reals so it just ends up being $\langle u, v \rangle = \langle v, u \rangle$)
- 2. $\langle ku + lv, w \rangle = k \langle u, w \rangle + l \langle v, w \rangle$
- 3. $\langle v, v \rangle \geq 0$ where equality holds iff $v = \mathbf{0}$

where $v, w \in V$ and $k, l \in K$. A vector space with such an operation is called an inner product space.

WARNING: In the exam make sure to check every inner product you write \langle , \rangle and not the dot product (unless specifically given)

Inner Product Spaces

This process allows us to construct orthonormal basis given a set of n linearly independent vectors:

$$u_1 = \frac{v_1}{||v_1||}$$

$$u_2 = \frac{v_2 - \langle v_2, u_1 \rangle u_1}{||v_2 - \langle v_2, u_1 \rangle u_1||}$$

$$u_3 = \frac{v_3 - \langle v_3, u_1 \rangle u_1 - \langle v_3, u_2 \rangle u_2}{||v_3 - \langle v_3, u_1 \rangle u_1 - \langle v_3, u_2 \rangle u_2||}$$

and so forth...

The best way of understand how this works is just to try it yourself! Maybe try finding an orthonormal basis using the set $\{(1,2,3),(0,1,5),(1,0,4)\}$ which spans \mathbb{R}^3 .

An $n \times n$ matrix A is orthogonal, if and only if

- $ightharpoonup AA^T = I$
- or equivalently, the columns of A are all orthogonal

Inner Product Spaces

If an $n \times n$ matrix A is symmetric, then

- ► A has all real eigenvalues
- ► A has all orthonormal eigenvectors

- Cross Product
- Line and Planes
- Cartesian and Vector Equations
- Distances

$$v=(a\cdot \hat{b})\hat{b}$$

- 1. Point to Line
- 2. Point to Plane
- 3. Line to Plane
- 4. Plane to Plane
- 5. Line to Line
- Line of intersection between two planes.