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Words from the Editor

Time flies, and while you may still be recovering from the soccer/holidays/the
last issue of Paradox, we have brought out one of the most entertaining issues
ever! For those who don’t already know, Paradox is the magazine of the Mel-
bourne University Mathematics and Statistics Society (or MUMS – I’ll leave
you to figure out this slightly inappropriate acronym).

So you may ask, why would one divest his or her precious time from impor-
tant tasks like reading the social gossip columns, procrastination, playing on
the X-box, or even ‘studying’ engineering, to insted read a maths magazine?
The answer lies in the capable training of the mind by mathematics, which
allows one to be logical, creative, systematic and rigorous – these are indeed
products of the intellect not achievable by any of the aforementioned activities.

Students of applied mathematics may spuriously claim that Paradox is not
‘useful’. Well, this issue has some great advices, including how to pass an
exam metaphysically, or to survive devilish traps in your adventure. If you’ve
ever been embarrassed about a wrong proof you did in a test, worry no more,
for we have collected a whole lot of them. If you are thinking about getting
married, we have some tips from the happy-end problem. There is even a
World-Cup related discussion from Kim, our resident geometer. Last time
Kim wrote an article for us, it immediately made its way into the Maths B
course content.

Recently, a student from mathematical commerce (right. . .) alerted me to the
alarming correlation between the number of contributors to Paradox per issue
and petrol prices. It is claimed that 84% of the variations in the number of con-
tributors can be explained by the petrol price. The following graph illustrates
the trend. The point is that as there is no sign of the petrol price ever going
down, we are in short supply of contributors. So please, any articles, puzzles
or ideas are welcome! Just send them via email and we’ll get them published.

— James Wan
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Angels and Demons

(apologies to Dan Brown)

The Problem

Imagine, for a moment, that you are Indiana Jones. You’ve just finished slash-
ing your way through a swarm of faceless enemies, have rescued a dashing
blonde, and discovered the whereabouts of the lost city of Atlantis (and all
this before lunch), and now you find yourself in an ancient temple, walking
across a floor which is tiled in a grid. Then all of a sudden one of the floor tiles
around you gives way, falling into the fiery depths of a volcano below. You
step across to a tile beside you, and as you do, another tile falls away. Every
new tile you move to leads to another tile being destroyed and you realise that
if these fallen tiles manage to completely surround you, all will be lost, as you
will have nowhere to go. The question is, are you safe? Sure, the tiles may
be falling randomly, so it’s unlikely you will be completely surrounded, but
what if they weren’t? What if someone was controlling them? Could they trap
you, assuming the floor you are on is infinite? Who wins this game of life and
death? Indiana, are your days of tree-slashing and whip-cracking over?

This is essentially the Angels (and Devils) problem, made famous by John Con-
way (think A Beautiful Mind), but actually first discussed many years earlier.1

The angel – placed somewhere on an infinite tiled floor - is Indiana, and the
devil controls the tiles, eliminating exactly one tile for every move the angel
makes. There are many variants to the problem, but essentially they all ask
the same question, does the angel have an escape strategy, to avoid being cap-
tured, or does the devil have a strategy to eventually trap the angel, no matter
how long it takes? From the simple version above, we can extend the prob-
lem to consider the k-angel, one that, on every turn, can fly to anywhere in
a k-tile radius (to put it formally, from coordinate (x, y) it can move to any
(x′, y′) 6= (x, y) such that |x − x′|, |y − y′| ≤ k, including jumping over any
removed squares in the middle).

1D. Silverman and R. Epstein are usually credited with its invention.
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This problem is deceptively simple. The question posed by Conway asks
whether, for a sufficiently large k, a k-angel has a strategy to escape the devil.
On first glance it seems obvious; a powerful enough angel should be able to
escape the clutches of the devil, as it can fly, maybe, millions of tiles for ev-
ery one that the devil removes. A naive strategy might be to run in one di-
rection, always heading north, and the devil will never be able to stop you.
Surprisingly though, this problem is still unsolved. No one can prove that any
angel, no matter how powerful, ever has an escape strategy, but also no one
has proved the opposite, that the devil always wins. If the thought of solving
this elusive problem is not incentive enough, Conway was so intrigued by it
that he offered his own money to anyone that can solve it: $100 for a proof
that a powerful enough angel can escape, and $1000 for the proof that the devil
always wins. Clearly, Conway sits firmly in the angel camp.

The chess-king case

There has been much headway made into this problem over the years. The
obvious first step is to solve the problem for the 1-angel, Indiana in the example
above, or a chess-king if you prefer. For the case of the chess-king, it turns out,
perhaps unsurprisingly, that the devil has the winning strategy. To see why, let
us consider what happens when the king tries to move in one direction. As the
king heads, say, north, the devil can remove squares in an east-west line above
him, preventing him from ever going past it. If the king moves west, the devil
just adds to the wall, extending it out to infinity. We call this ‘pushing’ the king
along the line. All we need to do is start building the wall 5 squares away from
the king, and we can successfully create the wall, blocking further progress. A
proof of this is shown on the next page.
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Now, if we can successfully build one wall, we can do the same for four of
them, one on each side of the king, boxing it in. The only complication would
be where two walls intersect, for if we are pushing the king along one wall,
we have no time to create another. To prevent this problem occurring, we first
create ‘caps’ and then proceed to fill in the walls. Using this method, we can be
assured of capturing the king (in fact we can do it using only a 32× 33 board.)

The angel breaks its shackles

We have now proven that the 1-angel cannot escape the clutches of the devil
indefinitely. But what about stronger angels: can the same techniques be used?
Unfortunately, for just the next most powerful angel, the 2-angel, this strategy
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breaks down. To see why, consider the advantages the 2-angel has over the
1-angel. Firstly, the angel moves along the walls twice as quickly, so we must
build the wall at twice the speed to contain it. Secondly, the angel can jump a
wall of thickness 1, so we must build a wall of thickness 2 to detain it. This
means that, in a sense, the 2-angel is 4 times as powerful as the 1-angel, for the
devil would need to remove 4 times as many tiles to contain the 2-angel in the
same way. Is this advantage to the angel? Not quite. The devil is not done with
yet. It still has a few tricks up its sleeve.

The devil fights back

If you were a k-angel, faced with disappearing tiles, the most obvious survival
strategy would be to head in one direction, always going the same way, and
hoping for the best. Surprising enough, this is in fact one of the worst strate-
gies, for it leads us to one of the few cases where we know for certain who
wins, and it is the devil. Soon after encountering the problem, Conway proved
a k-angel that increases its y-coordinate after every turn, a k-fool, will lose this
game. A k-fool must progress north each move, even if it moves diagonally
(maybe thousands of tiles west and just one north). This means that to catch
it, the devil merely has to construct a wall above it, and the angel will not be
able to get around it.

In essence, the devil’s strategy works like this. Starting from the origin, the devil
considers the infinite triangle, tipped at the fool, of possible positions that the
angel can move to, bearing in mind it must head north every turn, so cannot
head due west or east, or south at all. The triangle’s edges will have gradient
1/k (k is the power of the fool), because for every k moves west/east, the k-
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fool must make at least 1 north. The devil also picks some point directly above
the fool, at a height of h, and draws an imaginary horizontal line through it,
creating a base for the triangle. Now as the fool heads north, the devil starts
eliminating tiles at random points along the base of the triangle, creating the
start of a ‘wall’ that will eventually be used to trap the fool. It continues to
fill out this wall, always destroying squares equally spaced along it, until the
angel has reached halfway. The key point here is that the minimum density of
the wall at this moment depends only on the power of the fool, and not on
the height chosen for the triangle. The reason for this is because the greater
the height, the longer the wall, but also the more tiles the devil can eliminate
before the fool reaches it. These two factors cancel each other out exactly, hence
the identical density. To complete his strategy, the devil readjusts the triangle of
possible positions to form a new one, half the size of the old one, and continues
to fill in the wall as the angel moves from halfway to three-quarters of the way.
Throughout this period the devil has added to his new, shortened, wall at the
same rate as before, because there is no point him adding to the wall that the
angel can never reach (outside the triangle). Thus, at three-quarters of the way
the wall is twice the density. Now, the devil readjusts his triangle again, and
again at 7

8 the distance, and again at 15
16 etc. At 7

8 the distance, the wall is 3
times the density. At 15

16 it is 4 times, and so on. For a large enough h, we can
achieve any density we like, until we achieve the density k that we require for
a deep enough wall to be built. Thus by the time the fool reaches the wall, we
have a k-thick wall in place waiting for it, so it is caught. All we need to do
is start building the wall at a great enough height, something we are free to
choose.

The devil’s quest for power

Before, we considered the case of the k-fool, the angel who strictly increases its
y-coordinate. From there, we can extend the same method to cover a k-fool
who only does not decrease its y-coordinate, a k-lax-fool. This new fool has
the added ability of being able to move due east/west, and so can potentially
get around a wall that the devil may have built. However, the devil still has a
strategy to contain him, and it is by turning him into a normal fool, albeit one
of much greater power. For if the k-lax-fool chooses to tread water, and head
due west or east instead of moving north, we can start blocking its progress at
a distance k2 away from the origin, so by the time the fool reaches it, the wall
is k-thick, so it must head north. This occurs at a distance of at most k2 + k.
So the k-lax-fool must head north at a distance of at most k2 + k from where it
started. Thus a k-lax-fool can be equated to a k2 +k-fool, one for which the devil
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already has a strategy. This devil-strategy for a k-lax-fool can be extended to a
radial analogy, an angel that never decreases its distance to the origin. Also, it
can also be extended to capture a k-relaxed-fool of laxity t, one that may decrease
its y-coordinate, but only does so by a bounded amount (so if the fool is at a
point (x, y), it cannot later be at a point lower than (x′, y − t) for some laxity
t). In other words, a relaxed-fool can move around a wall by heading south,
but can only move south by a pre-determined amount, before having to move
north again. To catch the relaxed-fool of laxity t, if it decides to head south, the
devil builds walls on either side of it (at a massive distance away, but ones that
extend downwards to a depth of t, the limit the relaxed-fool can drop to. In this
way, the relaxed-fool is eventually forced to head north, and so the devil again
converts it to a normal fool, though of a much higher power.

Through optimum processes such as the one used to catch the fool and other
extending techniques like the one we used to catch the lax-fool and the relaxed-
fool, the devil can attain a power that it may not appear to originally be capable
of.

The essence of the problem

The progress we have made is worthy, though a little contrived; however it
is easy to see why more broad strategies also fail against an intelligent devil.
For instance, a simple strategy for the angel would be to always choose a move
that increases most the average distance from itself to all the empty squares.
This is creating a sort of ‘function’, that chooses the direction that will further
it from the devil’s activity. But the devil can easily counter this strategy. It can
build a trap at an enormous distance to the north, then scare the angel into
the trap by eliminating squares immediately below the angel, thus deceiving
the ‘function’ used to protect the angel. On the other hand, if the ‘function’
is designed to keep the angel away from far-flung potential traps, then the
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devil can build a trap which is relatively close, then trick the angel into it by
eliminating a square several light-years away. It is incredibly hard to design a
‘function’ that is not sensitive to these sorts of tactics. This is essentially why
no one has been able to develop a winning strategy for the angel, and thus why
the problem has remained unsolved for so long.

The problem as it stands

The Angels and Devils problem interests mathematicians for several reasons.
Firstly, it seems so patently obvious that the angel should win the game if you
give it enough power, yet it is so hard to develop a method to achieve this
victory. Secondly, the devil has powers far beyond what seems likely on first
glance. Despite this, most people rest firmly on the side of the angel. The devil’s
powers, though significant, merely flatter to deceive.

Here is a brief summary of the progress made on the problem:

• Someone, either the angel or the devil, has a winning strategy; this is not
an unsolvable game.

• The devil has a winning strategy

– for a 1-angel (the chess-king)
– for a k-angel that always increases its y-coordinate (the fool)
– for a k-angel that never decreases its y-coordinate (the lax-fool)
– for a k-angel that can decreases its y-coordinate, but only by a bounded

amount (the relaxed-fool)
– for a k-angel that never decreases its distance from the origin

• The angel has a winning strategy

– for a k-angel on a 3-dimensional board (the argument used to prove
this is well worth a look)

Most remarkably, the 2-angel case is still open. This case may indeed hold the
key to generalising the entire problem, and taking home that cash prize. So
before you go boasting to your friends about the $2 you won from solving a
Paradox problem, try your hand at this. I’m sure John Conway would love to
hear from you.

— Stephen Muirhead
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“Don’t laugh, Fermat!”2

It is funny the sort of mistaks3 people sometimes make. Take, for example,
‘proofs’ of Fermat’s Last Theorem (FLT) (and Goldbach’s conjecture is another
prime candidate): there are no integer solutions for xn + yn = zn, n > 2 and
xyz 6= 0. Those who fell under its guise of simplicity included some of the
greats, such as Lindemann (who showed that π is transcendental), Lamé, and
most likely Fermat himself4. Of course, Lindemann, driven by false confi-
dence, tried to confer upon himself the imperishable distinction of solving
one of the greatest problems in mathematics.5 As for Fermat, he had a noto-
rious history of claiming proofs he did not have (and not always blaming the
margin6) – for instance, he claimed to have shown that every positive inte-
ger is a sum of at most three triangular numbers, four square numbers, . . ., n
n-polygonal numbers. The proof was never found, and it took Gauss, Jacobi,
Lagrange and Cauchy (not together, of course) to finally prove the proposition.

Nevertheless, this article will feature some of the lesser-known ‘heroes’ who
have dedicated their times to the problem - most of them came from the gen-
eral public. They sought not fortune or fame, but, deceived by the problem’s
simplicity, they too concocted sometimes naı̈ve ‘solutions’ somewhere in their
encounter with mathematics, one fraught with pitfalls and gross overuse of
‘QED’s.

I would like to thank Professor John Groves for allowing me to raid from his
office some of the impressive collection of false proofs he accumulated over
the decades, many begging to be published.

Historical background

Since an episode of the Quantum program on ABC, ‘A possible proof of Fer-
mat’s theorem’, in 1989, in which Dr Watson and Prof Rubinstein from this
university examined a man from Warragul and his half page nonsense ‘proof’

2Plus Eternal Creation, and other footnotes.
3Such as this one.
4Fermat did show the n = 4 case, but it took the genius of Euler, 100 years after the death of

the former, to make the next advance by settling the n = 3 case.
5This distinction currently belongs to Andrew Wiles, who solved the problem more than 10

years ago; the proof of Wiles’ Theorem, from which FLT is a corollary, was a about 200 pages [the
exact number depends on the size of the font].

6Cuius rei demonstrationem mirabilem sane detexi hanc marginis exiguitas non caperet, or ‘I have
discovered a truly remarkable proof of this which this margin is too small to contain.’
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of FLT,7 there has been an explosion of submissions from all around Australia.
The program was replayed in 1990 and sparked even more public interest.

Most submissions showed the fallacy in thinking that the theorem referred
to the sides of a right-angled triangle, in which case the demonstration is
quite straightforward. Nevertheless, they often carried a matter-of-fact tone,
such as, “ I have attempted the problem and have arrived at the solution en-
closed”. Upon learning this slight technical error, many withdrew from their
brief transgression of the mathematical realm, although one stubbornly re-
sisted, “The proof of Fermat’s Last Theorem I’ve sent in has a few errors (not
logical). . . thus it still remains a proof.”

The Persistent Solver

Some people have been trying to find a solution to FLT for months, or even
years, notwithstanding the fact that an elementary solution ever being pro-
duced is exceedingly unlikely. In fact, the attached (real) proof of the n = 4
case presents probably the simplest advance possible to make in FLT, and it re-
quires a good knowledge of infinite descent, Pythagorean triples, and unique
factorisation of the integers. Below are some samples from those who never
thought about studying some number theory:

“I think I have now the Right approach [after being] busy on and off Fermat’s
Last Theorem since 1956”. The approach was using the cosine rule to test some
specific values of angle C in a triangle.

“I believe [the amateur mathematician] had the correct philosophy in trying
to solve the problem by using lateral thinking.” “I have endeavoured to find
a solution over the past 4 weeks and believe the attached proof satisfies the
conjecture”

And he attached the following gems:

“The equation can be represented as a vector addition”; “common sense indi-
cates that angles less than 60 are not valid as the hypotenuse”; to illustrate this
point, 3 diagrams were included, specially showing the case of x = y = z − 1.

The conclusion was that the proof “could almost be written in the book mar-
gin”.

Blatant errors

7Prof Groves recalled that “the original proof was so bad that it’s not even wrong”.
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Some errors were so interesting that you wonder how they were made, or
what they meant. Examples include:

“To start with logic to maintain reality, one must remain on the one plain [sic].”

Another ‘proved’ (I won’t go into the details to bore the reader) that a3 + b3 =
c3 has no solutions in the reals, with the constraint that a, b, c are sides of a
triangle.

Some very rigorous and wrong maths came from this submission:

“Assumption: the sum of two integers is an integer.” “It makes sense to me
logically.”

And the main argument was: “as (a+ y)3 = a3 +3a2y +3ay2 + y3 not equal to
(y + a)3 − y3, then the difference of two cubes is not a cube.” The general case
was settled by the misuse of the binomial theorem: “(y + a)n = yn + 3yn−1a +
3yn−2a2 + 3yn−3a3 + . . .”.

Proof by examples and formulae

A common trend was to find lots of examples, and claim that they provide
enough evidence for the truth of the theorem. A particular paper had many
plots (again, not reproduced as they mean little), with seemingly irrelevant
theorems for triangles (FLT has little to do with triangles!) all over, such as
the cosine rule and Appolonius’ Theorem. Accompanying them were a few
‘compressed circles’ which apparently represent xn + yn = zn,8 made out in
the vague shapes of ellipses, that were declared sufficient to cover all cases.

With all these preparations, an error (0 divisor) was nevertheless found in the
work. The reply, after a hiatus of 3 years, was: “Your comment is accurate, but
nothing was said about the status of y. [Ed: there is no y associated with that
error.] Within this long period, I consulted with the local mathematicians and
ultimately, found the status of y. Henceforth, an elementary proof is found
out. I wish that you shall publish the enclosed paper in your esteemed Journal
[of the Australian Mathematical Society].” “No reference books or Journals
are available to prepare this paper. It has been prepared with the help of few
basic mathematical equations.”

Proof by ignoring historical significance

8They don’t, as the level curves of xn + yn = zn look more and more like a square as n
increases.
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Although the enlightened ones who watched Quantum learnt that the problem
was unsolved for more than 300 years by some of the greatest mathematicians
ever, some still managed to reduce it to a trivial problem.

“I came up with what I consider to be a simple solution.”

“The result of an hour’s scribbling is enclosed herewith.”

“If [my solution] is indeed valid. . . it might make an interesting follow-up for
the [TV program].”

“Since [my proof] appears OK to me. . .”

“Fermah. . .”

“Apparently [the man appearing in Quantum] failed in his attempt. . .”

A professor claimed to have not 1, but 3 proofs: 2 geometrical and 1 numerical.
“The Geometrical method-I is the shortest single-page proof”. “I wish that you
shall publish if you like.”

Proof by superior knowledge

One fellow amateur mathematician did some research and stated that his cal-
culus ‘proof’ (i.e. some roundabout differentiation around a triangle) could
not have been used by Fermat, since calculus wasn’t invented then.9

Another ‘proof’ by calculus began with:

xn + yn = zn

y = z cos B, x = z sinB

And the subsequent use of chain rule (on what?) just lost me. Yet, the writer
stated, ‘the enclosed effort is very simple and could have been what Fermat
had in mind. . . possibly there could be some flaw in these proofs.”

Proof by limits

9In fact this is not true: Fermat anticipated some differential calculus by his method of finding
the maxima and minima on a graph.
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y = An −Bn − Cn

y

An
= 1− (

B

A
)n − (

C

A
)n, C, B < A

so as n →∞,
B

A
,
C

A
→ 0

⇒ y → An

QED

Proof by having no idea

“Enclosed is the solution to Fermat’s problem.”

Inside I found one piece of paper with 2 similar triangles drawn on it. The first
triangle had side lengths 3, 4, 5 while the second had lengths 9, 16, 25, and the
pattern continued. Remarkably, the man claimed that the second triangle was
right-angled, “any parallels [i.e. the hypotenuses of the triangles] are powers
of the original. . .don’t laugh Fermat!.”

A parade of ‘proofs’ for other famous problems

“So during the last several months I have been working at the problem. This
lead me to write an article entitled: ‘To trisect an Angle with the Help of only
the Compasses and the Ruler’. If as yet, there is no known method for exactly
trisecting an angle. . . I can send copies of my article for publication in your
Journal of the Australian Mathematical Society.”

Such a construction is impossible, as trisection requires to find the root a cubic,
and such roots are proven to be unobtainable with the compass and the ruler.10

In 2004, many maths records were broken by a paper boldly (in both senses
of the word) titled “The Prime Formula and a Proof of Goldbach’s Conjec-
ture”.11

The first statement read, “Every even number is the sum of two odd numbers.
Let the sequence of odd numbers be S(odd) = 2n− 1 . . .”

10But it is possible using a marked, sliding ruler, or even paper folding; see future issues if you
want to know how!

11Which is still unsolved; it conjectures that every even number greater than 2 is the sum of two
primes.
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The logic continued: “Hence taking odd numbers 2n−1 and 1, we can express
2n as their sum!

“Which strongly suggests the conjecture is true, apparently. Of course, some
serious work begins now.

“Part 2: many even numbers are the sum of two identical primes.” This was
astutely met with the counter example, “8 = 4 + 4 but 4 is not a prime.

“Part 3: the difference of two consecutive even numbers is always 2. There-
fore the next even number is often made up of a prime and 3, 5, or 7 because
difference between each of these three primes is also 2. In fact this is true up
to 122”. Wow.

“Part 4: It is possible to create all even numbers by the sum of two primes.”
Huh? He further argued that because the even numbers end in even digits,
and primes end in odd digits, their endings match. Q.E.D.

Well, there were even examples:

“12 = 3 + 9, 22 = 3 + 19, 32 = 3 + 29, 42 = 13 + 29 . . .

“The above examples prove it is possible for every even number to be created
by the sum of two primes. There are no impossible combinations and therefore
no counter examples.” The first example speaks for itself.

Just to make sure that we understood him, there was a restatement: “Let one
of the primes be 1 . . . considering the fact that Goldbach considered 1 to be
Prime.12”

Then there was half a page describing a ‘prime generating formula’13. How-
ever, it only worked for n = 1 to 22, but claimed to be true for all n.

A tad of physics

Just as you think facts and logic cannot get more astray, here is a hidden ge-
nius’ thesis (all original spellings retained):

“Dear Sir. I would like to inform You that I have been RECOMMENDED for
the NOBEL - PRIZE, in ASTRONOMY, and MY - THESIS, is HISTORICAL.”

12To the credit of this intrepid solver, this is actually correct! Goldbach did consider 1 a prime,
but his original conjecture was worded differently.

13Such formulae do exist, but they are often so contrived that they have little practical use.
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Hardly any history essays have won a Nobel in Astronomy, especially since
there is no such Nobel category.

The man was a self-styled “Master of Science in Astronomy, Astro-physics,
Nuclear-physics, and electronics engineer.”

And the somewhat ironic reply he received was: “We have added your paper
to our collection of historic papers.”

“My thesis has been accepted by scientists and astronomers in U.S.A, Canada,
England, Australia, France, India, Japan, Iran (Persia), Sweden, Norway and
West-Germany.”

“When a ‘ray of light’ goes into ‘the gravitational field of a star’, it gets bent.
I have proved it mathematically.” “You might not understand it, but please
keep it as it is Historical”.

“This special star is called in astronomy a ‘neutron star’, or a ‘white dwarf
star’.”

“Gravitational interactions are transmitted at an infinite speed.” “Energy trans-
ferred to them by the quantum.” “The velocity of light is infinite.”

There were classical obfuscated passages such as: “δJx represents the inte-
grated loss of the forward momentum of the light quantum in its interaction
with all of the masses filling a cylinder of radius y = D around its trajectory
at the average density r. For d that average lateral distance from the path of
the light quantum must be substituted out to which the retarded gravitational
interactions between the light quantum and various particles of matter in the
universe are effective.”

It became clearer, as the thesis drawled on, that it was copied from a few gen-
eral science books. But hold on, there was more:

“I’m herewith enclosing Copies of MY-THESIS, in ASTRONOMY, on, ‘Matter,
Space, Time, and Eternal-Creation’. I have disproved, Albert-Einstein. (who
was a Genius.)”

This time, he became a ‘Dr.’ of the above fields, fearing that a master was not
persuasive enough.

“The Primal Fireball, ejecting gases, matter, and Galaxies, into the far reaches
of Outer-Space”. “By simple mathematics. . . in millions of years in the future
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(on millions of years time). . . all matter in space, will, having expended their
velocities, will reach zero velocity and stop.” “The earth is a planet.”

“There have been many strange occasions on this planet, where many radio
listeners, and television viewers, have to their utter astonishment, heard very
old radio programs, and seen very old television programmes (but not of very
high quality) on their screens. The explanation is of course quite simple: that
is, the radio waves that are transmitted, escape into space and get re-deflected
back to earth by a black-hole”. Nah, you are just watching SBS.

“This is incorrect. I do not agree.”

“Space is curved and 5-dimensional.” “Keplers laws - wrong” because “Ah!
But, Jupiter is a liquid planet” and it is not possible to use the laws on a liquid.

“Strange animals found in Australia - the kiwi and the platypus. . . the kiwi has
a great resemblance to the penguins. . . and platypus has a great resemblance
to the beavers of Canada.”

“Orbiting around the sun, are hundreds of millions of small solid objects called
meteoroids.” “The bigger ones fell down onto earth (like a ton of bricks).” The
evidence he provided was Ayers rock.

“Christ, Buddha, and Mohamed. . . were highly intelligent being from other
civilisations, from outer space or from the cosmos.” Here, the evidence was
that Buddha’s air chariot resembled an aeroplane.

Conclusion

Some of the above passages exemplify the saying, “a little knowledge is a
dangerous thing”, and we certainly learnt a lot of dangerous maths from them.
Curious mistakes serve to entertain, as long as you are not the one who erred.
I thank those valorous solvers who enriched our lives, though not in a way
they initially hoped.

— James Wan

John von Neumann was once in a physics lecture in Princeton.
The lecturer exhibited a slide with many pieces of experimen-
tal data and, although they were badly scattered, he argued
that most of them lay on a curve. It is said that von Neumann
murmured, “At least they lie on a plane.”
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This is from an actual newspaper article; all original errors have been retained.

The Australian, Saturday July 17 1971

NOTICE TO MATHEMATICIANS

I HAVE SOLVED FERMAT’S LAST THEOREM:

A CONDENSED PROOF FOLLOWS.

If An = Bn +Cn were integral and n an odd number, we could write B +C =
an, A− C = bn, A−B = cn and a.b.c. would be integral factors of A,B, C.

From these relations we may express B + C − A as either an − A,B − bn, or
C − cn, so that the difference between the second generation an, bn, cn and
the third generation A,B,C, is the same quantity, which we may call x, and x
must be less than bn, or B. ***

Suppose two fixed numbers symbolized as bn and cn, like the numbers 125
and 64 in certain characteristics but somewhat loosely, and make our first trial
value for an like 189.

This trial gives n the unique value n = 1, an = A1, b
n = B1, c

n = C1, and
B1 + C1 −A1 = 0.

From the relation *** above, any random numbers A,B, C, can be put in the
form A = A1 + x B = B1 + x C = C1 + x where B1 + C1 −A1 = 0.

If x is greater than B1, A,B,C, are eliminated.

If x is less than B1, it is clear from mere inspection that if x is positive or
negative (but not zero) (B1 + x)n + (c1 + x)n or B n

n + C n
n must be less than

(B1 + C1 + x)n or A n
n . In short, if 1251 + 641 = 1891 adding x to each number

needs a very big x to catch up with changing the index to 3.

The famous mathematician G. H. Hardy was once riding on a
train in Britain. Sitting across from him was a schoolboy read-
ing an elementary algebra book. Endeavouring to be friendly,
Hardy asked the lad what he was reading. “It’s advanced math-
ematics,” came the reply. “You wouldn’t understand.”
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A proof

(Real) proof of the n = 4 case of Fermat’s Last Theorem, similar to Fermat’s
original and only proof regarding the famous result.

We prove the more general result that there is no integer solutions to x4 +y4 =
z2 by infinite descent (that is, assuming we can find the smallest solution, we
then construct a smaller one, providing the contradiction).

It is well known that coprime Pythagorean triples can be represented by

a = 2mn

b = m2 − n2

c = m2 + n2

Where m,n are coprime. Then {x2, y2, z} are a coprime triple, from which we
know that (WLOG) x2 = 2mn and n2 + y2 = m2. Then {y, n,m} form another
coprime triple. As x is even, y is odd, so n is even. That is, there are coprime
integers r, s such that

n = 2rs

y = r2 − s2

m = r2 + s2

Now, if the product of two (positive) coprime integers is a perfect square, then
each must be a perfect square. As mn

2 = (x
2 )2, it follows m and n

2 are perfect
squares. Similarly, as rs = n

2 , r and s are perfect squares. But then r2 + s2 = m
gives us a smaller solution, for the left hand side is the sum of two perfect
fourth powers, and the right hand side a square, and so the proof is complete.

One day Norbet Wiener was walking across the MIT campus
when someone stopped him with a question on Fourier analy-
sis. Wiener wrote down the answer in some detail. The inter-
locutor was most grateful, and began to go on his way. “Just
one moment,” said Wiener. “Which way was I walking when we
met?” The man pointed in the direction. “Good,” said Wiener.
“Then I’ve had my lunch.”
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The Many Faces of Soccer and Other Digressions

And the million dollar question is . . . “The hebesphenomegacorona, gyrobifastigium,
bilunabirotunda are all: ”

A Custom Torture Instruments

B Non-Platonic Polytopes

C Cryptozoological Species

D Seventeenth Century Navigational Devices

Just to keep you in suspense I’m not going to answer this fascinating ques-
tion yet but instead explore a related topic – the 2006 World Cup. Regarding
this, most people are still asking why the Socceroos weren’t world champions,
given that Italy defeated them simply because defender Fabio Grosso decided
to charge into Lucas Neill’s defenseless head. This is a perfectly reasonable
question, however it is not entirely relevant to this discussion. A slightly more
pertinent issue is the controversy surrounding the design of the ball. With 14
bonded panels, the new design is nothing like your conventional soccer ball.
Which begs the question: what does a conventional soccer ball look like? If
you ask most people this question they can probably tell you that:

I - It consists of regular pentagons and hexagons.
II - Any corner looks the same as any other corner.

Actually, with just this information, it would be possible to work out what a
soccer ball looks like, even if you were an AFL player.

So a good start is to consider what a vertex looks like. With a little thought it
should be clear that you could not have 4 or more faces meeting at a vertex. If
you could, what would happen when you flattened the faces at that vertex to
form a planar net? The angle sum would be at least 4 × 108◦ which is greater
than 360◦.

Similarly, you could not have 2 or less faces meeting at a vertex. So at each
vertex you must have 3 faces meeting. Next you might ask what these 3 faces
could be. They could not be three hexagons, as the faces would be coplanar.
They cannot be three pentagons either, otherwise by II , the whole soccer ball
would be all pentagons with no hexagons, i.e. a dodecahedron.
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So at all vertices, 2 pentagons and 1 hexagon meet, or at all vertices 1 pentagon
and 2 hexagons meet. So starting with a single hexagon, let’s see what happens
in the former case.

But now what happens at vertex X? Two hexagons must meet here. This is
impossible.

So the only possibility is at every vertex, there is 1 pentagon and 2 hexagons.
A simple sketch should convince you that this means every pentagon is sur-
rounded by 6 hexagons, and every hexagon by 3 pentagons and 3 other hexagons.
So far we have scammed our way without actually doing any mathematics -
yet our image is almost complete!

We need a few definitions: Let V be the number of vertices, F be the number
of “faces” and E be the number of edges. Suppose there are P pentagons and
H hexagons (so F = P + H).

At every vertex we have 3 edges meeting, but each edge connects 2 vertices, so
3V = 2E. Furthermore, each pentagonal face has 5 edges, and each hexagonal
face has 6 edges, but each edge borders 2 faces. So 5P + 6H = 2E.

We now use Euler’s theorem for convex polyhedra, V + F − E = 2. Bung
everything into the equation and you get 5P+6H

3 + (P + H)− 5P+6H
2 = 2 =⇒

P = 12. However, now consider edges bordering between pentagonal and
hexagonal faces. For pentagonal faces, there are 5P . For hexagonal faces,
there are 3H . So 5P = 3H . Then H = 20.

We now know the numbers of pentagonal and hexagonal faces, and their ar-
rangements. We hence determine a soccer ball to be as follows:



Paradox Issue 2, 2006 Page 23

It is interesting to note that the soccer ball is formally known as the truncated
icosahedron, and that it is the structure of the molecule of the allotrope of carbon
called buckminsterfullerene (C60).

A very similar problem is that of finding all the Platonic Solids. The Platonic
Solids are those polyhedra with the following two properties:

• They are convex, meaning that any segment connecting two non-coplanar
points on the surface of the polyhedron lies within the interior.

• All faces are congruent regular polygons.

Using Euler’s theorem, it is fairly simple to prove there are only 5.
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Often convexity is ignored when applying Euler’s theorem to polyhedra, how-
ever this problem demonstrates the danger of this omission.

If concave polyhedra are allowed, Euler’s theorem is not necessarily true (as
the polyhedra are not necessarily topologically equivalent to a sphere), and in
fact it turns out there are an additional 4 polyhedra satisfying the 2nd require-
ment, known as Kepler-Poinsot solids after their discoverers.

Euler’s theorem fails for the great dodecahedron and small stellated dodecahedron,
instead we have V + F − E = −6. This discrepancy led the mathematician
Ludwig Schläfi to mistakenly believe they could not exist.14

It is worth noting that Euler’s theorem does hold if we view the polyhedra as
“normal” polyhedra. However in this case the faces can no longer be viewed
as regular polygons. For example the face of the great dodecahedron is no longer
a regular pentagon but instead an isosceles triangle.

You are probably wondering what all of this has to do with the original million-
dollar question, which I remind you is:

“The hebesphenomegacorona, gyrobifastigium, bilunabirotunda are all: ”

A Custom Torture Instruments

B Non-Platonic Polytopes

14See http://mathworld.wolfram.com/Kepler-PoinsotSolid.html
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C Cryptozoological Species

D Seventeenth Century Navigational Devices

Just to confirm your suspicions, the theme of this article has been polyhedra,
so it may help to know that a polyhedron is really just a polytope in R3. So
yes, the answer is B. The hebesphenomegacorona, gyrobifastigium, bilunabirotunda
are all examples of Johnson solids, which are those convex polyhedra having
regular faces, and equal edge lengths, excluding certain families of polyhedra
such as the Platonic solids.15

I suppose option A is also arguable. Given its fearsome shape, a slow painful
death by the bilunabirotunda is definitely imaginable. Realistically though, if
you’re in the torture biz, using something like the gyroelongated pentagonal
cupolarotunda would probably sound more formidable.

— Kim Ramchen

On one occasion, Erdös met up with a mathematician and
asked him where he was from. The reply was “Vancouver”.
“Oh,” said Erdös, “then you must know my good friend Elliott
Mendelson.” After a moment’s silence the reply was, “I am your
good friend Elliott Mendelson.”

15See http://mathworld.wolfram.com/JohnsonSolid.html for exactly which families.
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A metaphysical view of 620-211

When I started maths and stats
I also did philosophy
in that we studied brains in vats
and Descartes’ dual-lology

My study habits weren’t the best
I did not always go
To lectures, tutes and even tests
My learning curve was slow

One day in June, I learned my lesson
it’s one that you must know
it happened in an exam-session
I was a daft mo-fo

On thursday was my maths exam
but physics was on tuesday
on monday I had planned to cram
for only stuff the next day

So Tuesday came, so starts the fable
but something wasn’t proper
I sat and stared but on the table
there lay a quaint heart-stopper

The maths exam was sitting there
and quite to my surprise
I looked around and to be fair
could not believe my eyes

I couldn’t believe I’d muddled up
the dates of my exams
but I never, never, never give up
so I came up with a plan

I’d work from basics, from the ground
first principles they were known
Whitehead and Russell knew it was
sound
as Principia Mathematica has shown

Alas my mind had not the will
nor ability that day
to finish all, to crush, to kill
the shock and the dismay

But greater shock there was to come
for when results came out
that subject’s final score would sum
to fifty percent

— Daniel Yeow

P.S. Due to his interesting study techniques, Daniel became the education offi-
cer for MUMS.
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Maths jokes

1 + 1 = 3 for very large values of 1.

—

Q: What do you call a young eigensheep?

A: A lamb, duh!

—

Q: Why are mathematicians afraid to drive a car?

A: Because the width of the road is negligible comparing to its length.

—

Q: How do you make one burn?

A: Differentiate a log fire.

—

Life is complex; it has both real and imaginary components.

—

“I’m sorry, the number you have dialed is imaginary. Please rotate by 90 de-
grees and dial again.”

—

This is a transcendental extension in all fields, so to speak, of the well-known
“prime” joke: the task is to test the hypothesis that all odd numbers greater
than 1 are primes.

Mathematician: 3 is a prime, 5 is a prime, 7 is a prime, 9 is not a prime, hence
the hypothesis is false.

Pure mathematician: 3 is a prime, 5 is a prime, 7 is a prime, and by induction
the hypothesis is true.

Physicist: 3 is a prime, 5 is a prime, 7 is a prime, 9 is an experimental error, . . .
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Engineer: 3 is a prime, 5 is a prime, 7 is a prime, 9 is a prime, . . .

Programmer: 3 is a prime, 5 is a prime, 7 is a prime, 7 is a prime, 7 is a prime,
. . .

Salesperson: 3 is a prime, 5 is a prime, 7 is a prime, 9 – we’ll do for you the
best we can, . . .

Computer Salesperson: 3 is prime, 5 is prime, 7 is prime, 9 will be prime in the
next release, . . .

Biologist: 3 is a prime, 5 is a prime, 7 is a prime, 9 – results have not arrived
yet, . . .

Lawyer: 3 is a prime, 5 is a prime, 7 is a prime, 9 – there is not yet enough
evidence to prove that it is not a prime, . . .

Accountant: 3 is prime, 5 is prime, 7 is prime, 9 is prime, deducing 10% tax,
. . .

Statistician: try several randomly chosen numbers: 17 is a prime, 23 is a prime,
11 is a prime, . . .

Professor: 3 is prime, 5 is prime, 7 is prime, and the rest are left as an exercise
for the student.

Psychologist: 3 is a prime, 5 is a prime, 7 is a prime, 9 is a prime but tries to
suppress it, . . .

Chemist: What’s a prime?

Politician: “Some numbers are prime. . . but the goal is to create a kinder, gen-
tler society where all numbers are prime. . .”

—

An engineer, a chemist and a mathematician are staying in three cabins at an
old motel. First the engineer’s coffee maker catches fire. He smells the smoke,
wakes up, unplugs the coffee maker, throws it out the window, and goes back
to sleep.

Later that night the chemist smells smoke too. He wakes up and sees that a
cigarette butt has set the bin on fire. He says to himself, “How does one put
out a fire? One can reduce the temperature of the fuel below the flash point,



Paradox Issue 2, 2006 Page 29

isolate the burning material from oxygen, or both. This could be accomplished
by applying water.” So he puts the bin in the shower stall, turns on the water,
and when the fire is out, goes back to sleep.

The mathematician has been watching all this out the window. So later, when
he finds that his pipe ashes have set the bed sheet on fire, he is not in the least
taken aback. He says: “Aha! A solution exists!” and goes back to sleep.

—

“A mathematician is a machine for turning coffee into theorems.” – Paul Erdös

Addendum: American coffee is good for lemmas.

—

“Students nowadays are so clueless”, the math professor complains to a col-
league. “Yesterday, a student came to my office and wanted to know if General
Calculus was a Roman war hero. . .”

—

In a General Calculus class, a student raises his hand and asks: “Will we ever
need this stuff in real life?”

The professor gently smiles at him and says: “Of course not – if your real life
will consist of flipping hamburgers at MacDonald’s.”

—

Mathematicians never die – they only lose some of their functions.

—

“What’s your favorite thing about mathematics?”

“Knot theory.”

“Yeah, me neither.”

—

To continued reading, please turn the page. . .
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The problem with a happy ending. . .

Those of you who’ve read up a bit about a man called Erdös (pronounced air-
dish) might know about the ‘happy-end problem’. For those who don’t know
anything about it, here’s a little bit of the history behind it.

As with most stories about maths, there is coffee involved in this one. In this
case, the coffee was being served at a café in Hungary, where a few people had
gathered to have a little chat. During the conversation, Esther Klein shared the
following maths theorem with her friends, of which included Paul Erdös and
György (George) Szekeres.

Theorem: Given any 5 points drawn on a plane, no 3 are collinear, at least 4
points will form the vertices of a convex quadrilateral.

She then challenged them to show it to be true, before providing the following
proof. Now, I’m going to be a bit hand-wavy about the following:

Proof of Theorem: Klein noticed that with these five points, we can always
separate them into 3 possible scenarios.

1. All five points form a convex pentagon, so just joining up any two of the
dots will yield a quadrilateral.

2. Four of the points will form a convex quadrilateral, enclosing the fifth
point. This is a trivial case as we have a convex quadrilateral to start off
with.

3. Two of the points will be enclosed inside a triangle. Using simple ar-
guments it can be shown that the two inside points will form a convex
quadrilateral with two of the points from the enclosing triangle.
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The proof was simple, elegant and yielded a very interesting result, so it was
only natural that Erdös and Szekeres would try to take it further. The two
eventually generalised the theorem to a conjecture that, to be certain of having
a convex k-sided polygon, 2k−2 + 1 points would be necessary. E.g. to obtain
a triangle (k = 3), we’d need 23−2 + 1 = 3 points, and to get a convex hexagon
we’d need 17 points. Fortunately, as of yet no one has proven that 2k−2 + 1 is
sufficient for k ≥ 6. In fact, even the proof k = 5 case was first published only
in 1970,16 some 37 years after the original meeting at the café, so the problem
is definitely non-trivial and very worth-while.

Although they did not prove their conjecture, Erdös and Szekeres did some
excellent work to show that N(k), the number of points necessary to guarantee
a convex k-sided polygon, always exists. Moreover, they even showed that

2k−2 + 1 ≤ N(k) ≤
(

2n− 4
n− 2

)
+ 1

This achievement may have aided Szekeres in gaining Klein’s hand in mar-
riage, which is the very reason Erdös dubbed this problem the “happy-end
problem”. Now in true ethos of Paradox, let us prove half of this result and
attain semi-mathematical-enlightenment.

Proof for the lower bound:

First, we need to invent two new concepts: caps and cups. A cap is just any
chain of points where the gradient between successive points is decreasing
and a cup is just the opposite. To be more specific, a cap/cup made up of k
points is called a k-cap/cup.

To start off, we’ll prove the following lemma using induction. Then we’ll con-
16Although it was stated in the 1935 Erdös and Szekeres paper that Endré Makai had a proof to

the k = 5 case.
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struct an example with 2n−2 points that does not include any n-sided convex
polygons, and hence show that at least 2n−2 + 1 points are needed.

Lemma: There exists a set of
(
p+q

p

)
points with neither a (p + 2)-cup nor a

(q + 2)-cap.

Step 1: For p = 1,
(
1+q
1

)
= 1 + q. Now, a (q + 1) cap has 1 + q points, but has

neither a 3-cup nor a q + 2 cap. Similarly for q = 1, a (p + 1)-cup has neither a
3-cap nor a q + 2 cup. So, we’ve shown a base case to do our induction from.

Step 2: Assume that there are sets S1 and S2 with
(
p−1+q

p−1

)
and

(
p+q−1

q−1

)
points

respectively, such that they obey the Lemma.

Step 3: We’ll now show that you can construct a set S with
(
p+q

p

)
points that

also obeys the lemma, and hence show that by the principles of mathematical
induction, the whole thing works. What you do is: you place S1 and S2 really
really really far apart, so that the gradient between any two points from two
different sets will be much greater than the gradient between points in the
same set. Notice that

(
p−1+q

p−1

)
+

(
p+q−1

q−1

)
=

(
p+q

p

)
, so we’ve got enough points

for this set S. Now check out the diagram below. Without formalising the
proof, you should see that the biggest possible cup that you can possibly get
is a (p + 1)-cup and the same goes for the cap.

Now that we’ve got that lemma half-sorted out, let’s construct the actual set
of points we need to prove the lower bound.

Step 1: Let’s make up the sets A0, A1, A2, . . . , An−2, with the properties that Ai

has
(
n−2

i

)
points, it has no (i + 2)-cup nor (n− i)-cap (possible via the lemma)

and all gradients between points in Ai are between −1 and 1.

Step 2: Now draw a 4(n − 1) pointed regular polygon around the origin of
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the plane. We’re going to take the (n − 1)-points between 45 and 135 degree
bearings from the origin and replace them with the (n− 1) sets that we made
up in step 1, so that A0 is on the bottom, and A1 is the next on the bottom. . .
and An−2 is on the top. Just label all of these points as one massive set T , and
we’re done!

Firstly, we can show by the binomial theorem that the total number of points
in T is

(
n−2

0

)
+

(
n−2

1

)
+ . . . +

(
n−2
n−2

)
= 2n−2. So far so good. Let’s now call

‘P ’ the biggest convex polygon in T . Note that if P is completely inside of Ai,
then it can at most have a (i + 1)-cup and (n − i − 1)-cap, giving a total of
n − 2 points, the −2 due to over-counting the two end points in the maximal
cap and cup. If P isn’t completely inside of Ai, let’s say that it starts there and
ends at Ai+j . From this, we can deduce that the part of P inside of Ai is a
cup since it’s on the bottom, and the part inside of Ai+j is a cap. We can also
deduce that along the way from Ai to Ai+j , P touches the sets in between at
most once, and does not touch the sets below Ai or above Ai+j . This in turn
means that the maximum number of points P can have in this case is i+1 from
Ai, n − i − j − 1 from Ai+j and j − 1 points from the sets in between; a total
of n− 1 points. Therefore, we can conclude that no convex n-sided polygon is
possible for this particular example of 2n−2points and voila! We have a lower
bound.

Hopefully, you now appreciate why I’m not going to prove the upper-bound.
What I will do however, is tell you that as of 1998, a much better upper bound
has been found by Tóth and Valtr, and it is:
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2k−2 + 1 ≤ N(k) ≤
(

2k − 5
k − 2

)
+ 2

Which I also refuse to prove.

Although the best progress made on the problem has been in improving the
upper-bound, there’s still much interest surrounding the k = 6 case. In fact,
there have been rumours that Szekeres and Lindsay Peters have proven the
k = 6 case in work yet to be published. The rumours also claim that the proof
was done via an exhaustive computer search, a process that is impractical for
higher values of k.

The happy-end problem is but the simplest of many similar problems all ex-
ceedingly interesting in their own right. For example, what is the number of
points needed to ensure an empty convex k-sided polygon? For k = 3, 4 and
5 we already know that the answers are 3, 5 and 10 respectively. It has also
been proven by Horton that for k ≥ 7, there are arbitrarily large set of points
where there aren’t any convex empty k-sided polygons, but for k = 6, we
know nothing except that it has a lower bound of 27. Another related type of
question is to ask how many convex quadrilaterals or pentagons etc we can be
guaranteed to have, given any set of k points.

One Last thing: $500 U.S. ‘Erdös dollars’ are available for the first person to
prove the general case of the happy-end problem. Which is quite a bit more
than Paradox is willing to offer. So, make a start on it?

—Yi Huang

One day Straus and Einstein finished work on a paper. They
looked for a paper clip to bind it together. After shuffling
through several drawers they finally found one lone clip. But
it was so bent and mangled that it could not be used. So
then they began looking for a tool to straighten the paper clip.
Scrounging through more drawers, they finally found a full box
of brand new paper clips. Einstein immediately began to shape
one of the new clips into a tool for rectifying the bent clip.
Straus was bewildered, and asked Einstein what he was do-
ing. The reply was, “Once I am set on a goal, it becomes
difficult to deflect me.”



Paradox Issue 2, 2006 Page 35

Solutions to Problems From Last Edition

Problem 1 For a hand without any combinations, we need 5 distinct ranks, of
which there are

(
13
5

)
= 1287. However, there are 10 set of ranks that form a

straight, so we take away the 10. For each set of ranks, there are 4 choices for
each card, but we cannot choose from the same suit (that would be a flush).
Hence in total there are 1277× (45 − 4) = 1302540 hands, giving a probability
of 1302540÷

(
52
5

)
= 1277

2548 , or just over 1
2 .

Problem 2 No. Assume it is possible, then x2 + y = a2, x + y2 = b2, a, b are
positive integers, and so x ≤ a−1, y ≤ b−1. But a2 +b2 = x(x+1)+y(y+1) ≤
a(a− 1) + b(b− 1) = a2 + b2 − a− b, and we have a contradiction.

Problem 3 If a|b, then take Fn mod Fa, then the two terms after Fa will be
identical, i.e. a constant k times 1, 1. Hence the rest of the sequence is just k
times the start of the sequence, from 1, 1 to Fa, until a 0 is reached, and so on:
the 0’s occur at every ath position, so Fa|Fb.

Now suppose Fa|Fb, we again take mod Fa. Then Fb ≡ 0 mod Fa. As we saw
earlier, the 0’s repeat at intervals of a; we only need to show that there are no
other 0’s, i.e. k times the sequence from 1, 1 to Fa has only one 0. But any
2 consecutive Fibonacci numbers are coprime, and k, being Fa+1 mod Fa, is
coprime to Fa, so kx ≡ 0 only when x ≡ 0 mod Fa, where x belongs to the
sequence from 1, 1 to Fa, i.e. x = Fa. So there are no other 0’s and b must be a
multiple of a. This completes the proof.

(Note that there is one exception to the rule, that is F2.)

Problem 3 from a few editions ago concerning normals of polynomials is still
UNSOLVED! The prize is $15 now . . . We challenge anyone, including lectur-
ers, to come up with a solution. The question is:

A polynomial of degree n > 1 with real coefficients has n distinct real roots.
Show that the sum of the gradients of the normals to the graph of the polyno-
mial at these roots is 0.

Paradox Problems

The following are some problems for which prize money is offered. The per-
son who submits the clearest and most elegant solution to each problem will
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be awarded the indicated amount. Solutions may be emailed to us (see inside
front cover for address) or you can drop a hard copy into the MUMS pigeon-
hole near the Maths and Stats Office, Richard Berry Building. Congratulations
to Cristian Rotaru who solved Question 2 and 3 from the last edition. Cristian
can come by the MUMS room to pick up the prize.

1. ($2) What is the average number of throws of a regular die needed to get
all the numbers from 1 to 6 at least once?

2. ($2) Show that, for positive reals a, b, c, a
b+c + b

c+a + c
a+b ≥

3
2 .

3. ($5) It is fairly amazing that there exists simple formulae for the area
of a general quadrilateral in terms of its sides or diagonals or angles.

For instance, prove the area of a quadrilateral is
√

(pq)2 − 1
16 (A2 −B2)2,

where A,B are the diagonals, and p, q are the distances between the mid-
points of opposite sides.

4. ($5) Rationalising denominators is a common part of high school maths.
Hence rationalise the denominator of 1√

2+ 3√3
.

Words from the President

Mobile algorithms and interrupts have garnered tremendous interest from
both experts and system administrators in the last several years. In fact, few
statisticians would disagree with the study of the location-identity split, which
embodies the structured principles of robotics. Our focus in this paper is not
on whether active networks can be made collaborative, relational, and inter-
posable, but rather on describing a novel application for the deployment of
compilers

— James Zhao

Confused? This is an example of a randomly generated paper – a few that used
complicated words like the one above in fact made their way into professional
conferences! For more information, visit www.pdos.csail.mit.edu/scigen.

Paradox would like to thank Stephen Muirhead, Kim Ram-
chen, Yi Huang, Nick Sheridan, Daniel Yeow, James Saunder-
son, Tharatorn Supasiti, James Zhao, Adrian Khoo and Nor-
man Do for their contributions to this issue.


